Residue-class distribution and mean values of multiplicative functions

Akash Singha Roy, University of Georgia Partially based on joint work with Paul Pollack

Waterloo Number Theory Seminar

January 2025

Definition 1.

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is **uniformly distributed** (or **equidistributed**) **modulo** q if, for each $a \in \mathbb{Z}/q\mathbb{Z}$,

$$rac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod q\}\} o rac{1}{q},\quad \text{as } x o \infty.$$

Definition 1.

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is **uniformly distributed** (or **equidistributed**) **modulo** q if, for each $a \in \mathbb{Z}/q\mathbb{Z}$,

$$rac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod q\}\} o rac{1}{q},\quad \text{as } x o \infty.$$

Example: f(n) = n is equidistributed mod q for every q.

Definition 1.

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is **uniformly distributed** (or **equidistributed**) **modulo** q if, for each $a \in \mathbb{Z}/q\mathbb{Z}$,

$$\frac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod{q}\}\to \frac{1}{q},\quad \text{as } x\to\infty.$$

Example: f(n) = n is equidistributed mod q for every q.

Example (Pillai, Delange): $\Omega(n) = \sum_{p^k || n} k$ is equidistributed mod q for each fixed q.

Note: For q = 2, this is equivalent to the (weak form of the) PNT.

Definition 1.

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is **uniformly distributed** (or **equidistributed**) **modulo** q if, for each $a \in \mathbb{Z}/q\mathbb{Z}$,

$$\frac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod q\}\} o \frac{1}{q},\quad \text{as } x o \infty.$$

Example: f(n) = n is equidistributed mod q for every q.

Example (Pillai, Delange): $\Omega(n) = \sum_{p^k || n} k$ is equidistributed mod q for each fixed q.

Note: For q = 2, this is equivalent to the (weak form of the) PNT.

But for multiplicative functions, this is **NOT** the correct notion to consider. (Recall: f is multiplicative if f(mn) = f(m)f(n) for all $m, n \in \mathbb{N}$ such that gcd(m, n) = 1.)

Let $\varphi(n)$ denote Euler's totient; that is, $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Fact: For a fixed q, $\varphi(n) \equiv 0 \pmod{q}$ for "almost all" positive integers n:

$$\frac{1}{x}\#\{n\leq x:\ \varphi(n)\equiv 0\pmod q\}\}\to 1\quad \text{ as } x\to\infty.$$

Let $\varphi(n)$ denote Euler's totient; that is, $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Fact: For a fixed q, $\varphi(n) \equiv 0 \pmod{q}$ for "almost all" positive integers n:

$$\frac{1}{x}\#\{n\leq x:\ \varphi(n)\equiv 0\pmod q\}\}\to 1\quad \text{ as } x\to\infty.$$

This means that $\varphi(n)$ is not uniformly distributed mod q for **ANY** fixed q > 1.

Let $\varphi(n)$ denote Euler's totient; that is, $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Fact: For a fixed q, $\varphi(n) \equiv 0 \pmod{q}$ for "almost all" positive integers n:

$$\frac{1}{x}\#\{n\leq x:\ \varphi(n)\equiv 0\pmod q\}\}\to 1\quad \text{ as } x\to\infty.$$

This means that $\varphi(n)$ is not uniformly distributed mod q for **ANY** fixed q > 1.

For multiplicative functions $f: \mathbb{N} \to \mathbb{Z}$, it makes sense to study their distribution in the multiplicative group $U_q \mod q$. So now our sample space is $\{n: \gcd(f(n),q)=1\}$.

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if:

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if:

1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Example: For which q is $\varphi(n)$ weakly equidistributed mod q?

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Example: For which q is $\varphi(n)$ weakly equidistributed mod q?

Theorem 1 (Narkiewicz, 1967).

 $\varphi(n)$ is weakly equidistributed modulo q iff gcd(q, 6) = 1.

Consider $f : \mathbb{N} \to \mathbb{Z}$ and $q \in \mathbb{N}$. We say f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Example: For which q is $\varphi(n)$ weakly equidistributed mod q?

Theorem 1 (Narkiewicz, 1967).

 $\varphi(n)$ is weakly equidistributed modulo q iff gcd(q, 6) = 1.

Consequence of general criterion for "polynomially-defined" multiplicative functions.

Explicit numerical distributions of $\varphi(n)$ mod 5: For $x \ge 1$ and $r \in \{1, 2, 3, 4\}$ let

$$\rho_r(x) := \frac{\#\{n \le x : \varphi(n) \equiv r \pmod{5}\}}{\#\{n \le x : \gcd(\varphi(n), 5) = 1\}}$$

X		$\rho_1(x)$	$\rho_2(x)$	$\rho_3(x)$	$\rho_4(x)$
10	5	0.27165	0.28003	0.23993	0.20837
10^{6}	5	0.27157	0.27556	0.23979	0.21307
10	7	0.27073	0.27267	0.23999	0.21660
108	3	0.26998	0.27051	0.24032	0.21917
10 ⁹	9	0.26924	0.26884	0.24063	0.22127

Explicit numerical distributions of $\varphi(n)$ mod 5: For x > 1 and $r \in \{1, 2, 3, 4\}$ let

$$\rho_r(x) := \frac{\#\{n \le x : \varphi(n) \equiv r \pmod{5}\}}{\#\{n \le x : \gcd(\varphi(n), 5) = 1\}}$$

X	$\rho_1(x)$	$\rho_2(x)$	$\rho_3(x)$	$\rho_4(x)$
105	0.27165	0.28003	0.23993	0.20837
10^{6}	0.27157	0.27556	0.23979	0.21307
10^{7}	0.27073	0.27267	0.23999	0.21660
10^{8}	0.26998	0.27051	0.24032	0.21917
10^{9}	0.26924	0.26884	0.24063	0.22127

What fails mod 3? The numbers p-1, for $p \neq 3$ prime, either fail to be coprime to 3 or are "trapped" in the trivial subgroup of $(\mathbb{Z}/3\mathbb{Z})^{\times}$.

(Jump back to slide 31)

1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,

- 1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,
- 2. for each $(a_1,\ldots,a_K)\in U_q^K$,

$$\frac{\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}}{\#\{n \leq x : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}} \to \frac{1}{\varphi(q)^K},$$

as $x \to \infty$.

- 1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,
- 2. for each $(a_1,\ldots,a_K)\in U_q^K$,

$$\frac{\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}}{\#\{n \leq x : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}} \to \frac{1}{\varphi(q)^K},$$

as $x \to \infty$.

Narkiewicz (1982): general criterion for deciding when a given family f_1, \ldots, f_K of "polynomially-defined" multiplicative functions are jointly WUD to a given modulus.

- 1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,
- 2. for each $(a_1,\ldots,a_K)\in U_q^K$,

$$\frac{\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}}{\#\{n \leq x : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}} \to \frac{1}{\varphi(q)^K},$$

as $x \to \infty$.

Narkiewicz (1982): general criterion for deciding when a given family f_1, \ldots, f_K of "polynomially-defined" multiplicative functions are jointly WUD to a given modulus.

A consequence of this: Let $\sigma(n) = \sum_{d|n} d$, $\sigma_2(n) = \sum_{d|n} d^2$.

Theorem 2.

 $(\varphi, \sigma, \sigma_2)$ are jointly WUD modulo any fixed q s.t. $P^-(q) > 23$.

Question. Can we prove (weak) equidistribution theorems when q is allowed to vary with our stopping point x?

Question. Can we prove (weak) equidistribution theorems when q is allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix $K_0 > 0$. The primes $\leq x$ are weakly equidistributed mod q, uniformly for $q \leq (\log x)^{K_0}$. That is,

$$\frac{\#\{p \le x : p \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)}\#\{p \le x\}} \to 1$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ and $a \in U_q$.

Question. Can we prove (weak) equidistribution theorems when q is allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix $K_0 > 0$. The primes $\leq x$ are weakly equidistributed mod q, uniformly for $q \leq (\log x)^{K_0}$. That is,

$$\frac{\#\{p \le x : p \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)}\#\{p \le x\}} \to 1$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ and $a \in U_q$.

In other words, For any given $\epsilon > 0$, there exists $X(\epsilon, K_0)$ depending only on ϵ and K_0 s.t. the above ratio lies between $1 - \epsilon$ and $1 + \epsilon$ for all $x > X(\epsilon, K_0)$, all $q \le (\log x)^{K_0}$ and all coprime residues $a \mod q$.

Question. Can we prove (weak) equidistribution theorems when q is allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix $K_0 > 0$. The primes $\leq x$ are weakly equidistributed mod q, uniformly for $q \leq (\log x)^{K_0}$. That is,

$$\frac{\#\{p \le x : p \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)}\#\{p \le x\}} \to 1$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ and $a \in U_q$.

In other words, For any given $\epsilon > 0$, there exists $X(\epsilon, K_0)$ depending only on ϵ and K_0 s.t. the above ratio lies between $1 - \epsilon$ and $1 + \epsilon$ for all $x > X(\epsilon, K_0)$, all $q \le (\log x)^{K_0}$ and all coprime residues $a \mod q$.

Question (made precise). Can we establish analogues of Siegel-Walfisz with primes replaced by values of φ or $(\varphi, \sigma, \sigma_2)$?

Fix $K_0 > 0$. As $x \to \infty$,

$$\frac{\#\{n \le x : \varphi(n) \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)} \#\{n \le x : \gcd(\varphi(n), q) = 1\}} \to 1,$$

uniformly for $q \leq (\log x)^{K_0}$ satisfying gcd(q, 6) = 1 and coprime residues a mod q.

Fix $K_0 > 0$. As $x \to \infty$,

$$\frac{\#\{n \le x : \varphi(n) \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)} \#\{n \le x : \gcd(\varphi(n), q) = 1\}} \to 1,$$

uniformly for $q \leq (\log x)^{K_0}$ satisfying gcd(q, 6) = 1 and coprime residues a mod q.

Merits: Our original results work for a single multiplicative function f defined by a polynomial F at primes. Thus we are able to take the first step towards extending Narkiewicz's results to varying moduli q.

Fix $K_0 > 0$. As $x \to \infty$,

$$\frac{\#\{n \le x : \varphi(n) \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)}\#\{n \le x : \gcd(\varphi(n), q) = 1\}} \to 1,$$

uniformly for $q \leq (\log x)^{K_0}$ satisfying gcd(q, 6) = 1 and coprime residues a mod q.

Merits: Our original results work for a single multiplicative function f defined by a polynomial F at primes. Thus we are able to take the first step towards extending Narkiewicz's results to varying moduli q.

Shortcomings of this result:

 Several arguments are restricted to a single multiplicative function and cannot be generalized to families, so cannot uniformize Nakiewicz's 1982-criterion.

Fix $K_0 > 0$. As $x \to \infty$,

$$\frac{\#\{n \le x : \varphi(n) \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)}\#\{n \le x : \gcd(\varphi(n), q) = 1\}} \to 1,$$

uniformly for $q \leq (\log x)^{K_0}$ satisfying gcd(q, 6) = 1 and coprime residues a mod q.

Merits: Our original results work for a single multiplicative function f defined by a polynomial F at primes. Thus we are able to take the first step towards extending Narkiewicz's results to varying moduli q.

Shortcomings of this result:

- Several arguments are restricted to a single multiplicative function and cannot be generalized to families, so cannot uniformize Nakiewicz's 1982-criterion.
- Even for a single multiplicative function, we are not able to recover a uniform version of Narkiewicz's 1967-criterion as we need to impose several additional restrictions on q and F.

In recent work, these shortcomings have been addressed. The main results of today's talk are extensions of Narkiewicz's general criterion for families of "polynomially-defined" multiplicative functions that are essentially **optimal** in the range of q and arithmetic restrictions on q.

In recent work, these shortcomings have been addressed. The main results of today's talk are extensions of Narkiewicz's general criterion for families of "polynomially-defined" multiplicative functions that are essentially **optimal** in the range of q and arithmetic restrictions on q.

Consequence for $(\varphi, \sigma, \sigma_2)$: $\varphi(P) = P - 1$, $\sigma(P) = P + 1$, $\sigma_2(P) = P^2 + 1$.

In recent work, these shortcomings have been addressed. The main results of today's talk are extensions of Narkiewicz's general criterion for families of "polynomially-defined" multiplicative functions that are essentially **optimal** in the range of q and arithmetic restrictions on q.

Consequence for
$$(\varphi, \sigma, \sigma_2)$$
: $\varphi(P) = P - 1$, $\sigma(P) = P + 1$, $\sigma_2(P) = P^2 + 1$.

Theorem 4 (S. R., 2023).

Fix $\epsilon \in (0,1)$. As $x \to \infty$, we have

$$\frac{\#\{n \leq x : (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{q}\}}{\frac{1}{\varphi(q)^3} \#\{n \leq x : \gcd(\varphi\sigma\sigma_2(n), q) = 1\}} \to 1,$$

uniformly in moduli $q \leq (\log x)^{(1/2-\epsilon)\alpha(q)}$ having $P^-(q) > 23$ and in coprime residue classes a_i mod q, where

$$egin{aligned} lpha(q) &= rac{1}{arphi(q)} \# \{ u \in U_q : (u-1)(u+1)(u^2+1) \in U_q \} \ &= \prod_{\ell \mid q: \ \ell \equiv -1 \pmod 4} \left(1 - rac{2}{\ell-1}
ight) \cdot \prod_{\ell \mid q: \ \ell \equiv 1 \pmod 4} \left(1 - rac{4}{\ell-1}
ight). \end{aligned}$$

Extending uniformity to the Siegel-Walfisz range:

Issue: $(\varphi, \sigma, \sigma_2)$ are **not** jointly WUD uniformly to all $q \leq (\log x)^{K_0}$. Inputs n without many large prime factors obstruct uniformity!

Extending uniformity to the Siegel-Walfisz range:

Issue: $(\varphi, \sigma, \sigma_2)$ are **not** jointly WUD uniformly to all $q \leq (\log x)^{K_0}$. Inputs n without many large prime factors obstruct uniformity!

Example: Any prime $P \le x$ s.t. $P \equiv 3 \pmod{q}$ satisfies $\varphi(P) \equiv 2$, $\sigma(P) \equiv 4$, $\sigma_2(P) \equiv 10 \pmod{q}$.

Extending uniformity to the Siegel-Walfisz range:

Issue: $(\varphi, \sigma, \sigma_2)$ are **not** jointly WUD uniformly to all $q \leq (\log x)^{K_0}$. Inputs n without many large prime factors obstruct uniformity!

Example: Any prime $P \le x$ s.t. $P \equiv 3 \pmod{q}$ satisfies $\varphi(P) \equiv 2$, $\sigma(P) \equiv 4$, $\sigma_2(P) \equiv 10 \pmod{q}$. Thus

$$\#\{n \leq x : (\varphi, \sigma, \sigma_2)(n) \equiv (2, 4, 10) \pmod{q}\} \gg \frac{x}{\varphi(q) \log x}.$$

Extending uniformity to the Siegel-Walfisz range:

Issue: $(\varphi, \sigma, \sigma_2)$ are **not** jointly WUD uniformly to all $q \leq (\log x)^{K_0}$. Inputs n without many large prime factors obstruct uniformity!

Example: Any prime $P \le x$ s.t. $P \equiv 3 \pmod{q}$ satisfies $\varphi(P) \equiv 2$, $\sigma(P) \equiv 4$, $\sigma_2(P) \equiv 10 \pmod{q}$. Thus

$$\#\{n \leq x : (\varphi, \sigma, \sigma_2)(n) \equiv (2, 4, 10) \pmod{q}\} \gg \frac{x}{\varphi(q) \log x}.$$

The right hand side is much larger than $\frac{1}{\varphi(q)^3} \# \{ n \le x : \gcd(\varphi \sigma \sigma_2(n), q) = 1 \}$ if $q \gg (\log x)^{1/2}$.

Extending uniformity to the Siegel-Walfisz range:

Issue: $(\varphi, \sigma, \sigma_2)$ are **not** jointly WUD uniformly to all $q \leq (\log x)^{K_0}$. Inputs n without many large prime factors obstruct uniformity!

Example: Any prime $P \le x$ s.t. $P \equiv 3 \pmod{q}$ satisfies $\varphi(P) \equiv 2$, $\sigma(P) \equiv 4$, $\sigma_2(P) \equiv 10 \pmod{q}$. Thus

$$\#\{n \leq x : (\varphi, \sigma, \sigma_2)(n) \equiv (2, 4, 10) \pmod{q}\} \gg \frac{x}{\varphi(q) \log x}.$$

The right hand side is much larger than $\frac{1}{\varphi(q)^3} \# \{ n \le x : \gcd(\varphi \sigma \sigma_2(n), q) = 1 \}$ if $q \gg (\log x)^{1/2}$.

Work-around: Restrict to inputs n having sufficiently many large prime factors. Equidistribution is restored among these inputs.

Theorem 5 (S. R., 2023).

Fix $K_0 > 0$ and $\epsilon \in (0,1)$. We have

$$\begin{split} \#\{n \leq x : P_{13}(n) > q, (\varphi, \sigma, \sigma_2)(n) &\equiv (a_1, a_2, a_3) \pmod{q}\} \\ &\sim \frac{1}{\varphi(q)^3} \#\{n \leq x : P_{13}(n) > q, \gcd(\varphi \sigma \sigma_2(n), q) = 1\}, \end{split}$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ satisfying $P^-(q) > 23$ and in coprime residues a_i mod q.

Theorem 5 (S. R., 2023).

Fix $K_0 > 0$ and $\epsilon \in (0,1)$. We have

$$\begin{split} \#\{n \leq x : P_{13}(n) > q, (\varphi, \sigma, \sigma_2)(n) &\equiv (a_1, a_2, a_3) \pmod{q}\} \\ &\sim \frac{1}{\varphi(q)^3} \#\{n \leq x : P_{13}(n) > q, \gcd(\varphi \sigma \sigma_2(n), q) = 1\}, \end{split}$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ satisfying $P^-(q) > 23$ and in coprime residues a_i mod q.

For squarefree q, "13" can be replaced by "7".

1. Exploit a "mixing" phenomenon in U_q (quantitative ergodicity phenomenon for random walks in U_q).

1. Exploit a "mixing" phenomenon in U_q (quantitative ergodicity phenomenon for random walks in U_q).

Heuristic: Assume gcd(q, 6) = 1 and let $\mathcal{R}' = \{u \in U_q : u - 1 \in U_q\}.$

1. Exploit a "mixing" phenomenon in U_q (quantitative ergodicity phenomenon for random walks in U_q).

Heuristic: Assume $\gcd(q,6)=1$ and let $\mathcal{R}'=\{u\in U_q: u-1\in U_q\}$. Choose uniformly at random u_1,u_2,u_3,\ldots from $\mathcal{R}',$

1. Exploit a "mixing" phenomenon in U_q (quantitative ergodicity phenomenon for random walks in U_q).

Heuristic: Assume gcd(q, 6) = 1 and let $\mathcal{R}' = \{u \in U_q : u - 1 \in U_q\}$. Choose uniform

 $\mathcal{R}' = \{ u \in U_q : u - 1 \in U_q \}$. Choose uniformly at random u_1, u_2, u_3, \ldots from \mathcal{R}' , and consider the products

$$u_1-1,(u_1-1)(u_2-1),(u_1-1)(u_2-1)(u_3-1),\ldots$$

1. Exploit a "mixing" phenomenon in U_q (quantitative ergodicity phenomenon for random walks in U_q).

Heuristic: Assume $\gcd(q,6)=1$ and let $\mathcal{R}'=\{u\in U_q: u-1\in U_q\}$. Choose uniformly at random u_1,u_2,u_3,\ldots from \mathcal{R}' , and consider the products

$$u_1-1,(u_1-1)(u_2-1),(u_1-1)(u_2-1)(u_3-1),\ldots$$

Mixing in U_q : As $J \to \infty$, each element of U_q becomes roughly equally likely to appear as one of the products $\prod_{j=1}^{J} (u_j - 1)$.

1. Exploit a "mixing" phenomenon in U_q (quantitative ergodicity phenomenon for random walks in U_q).

Heuristic: Assume $\gcd(q,6)=1$ and let $\mathcal{R}'=\{u\in U_q: u-1\in U_q\}$. Choose uniformly at random u_1,u_2,u_3,\ldots from \mathcal{R}' , and consider the products

$$u_1-1,(u_1-1)(u_2-1),(u_1-1)(u_2-1)(u_3-1),\ldots$$

Mixing in U_q : As $J \to \infty$, each element of U_q becomes roughly equally likely to appear as one of the products $\prod_{j=1}^{J} (u_j - 1)$.

This mixing plays a central role for WUD of $\varphi(n)$.

1. Exploit a "mixing" phenomenon in U_q (quantitative ergodicity phenomenon for random walks in U_q).

Heuristic: Assume $\gcd(q,6)=1$ and let $\mathcal{R}'=\{u\in U_q: u-1\in U_q\}$. Choose uniformly at random u_1,u_2,u_3,\ldots from \mathcal{R}' , and consider the products

$$u_1-1,(u_1-1)(u_2-1),(u_1-1)(u_2-1)(u_3-1),\ldots$$

Mixing in U_q : As $J \to \infty$, each element of U_q becomes roughly equally likely to appear as one of the products $\prod_{j=1}^{J} (u_j - 1)$.

This mixing plays a central role for WUD of $\varphi(n)$. In the case of $(\varphi, \sigma, \sigma_2)$, the analogous mixing phenomenon is that of the tuples $(u-1, u+1, u^2+1)$ in the group U_q^3 , where u_1, u_2, u_3, \ldots are chosen from the set $\mathcal{R} = \{u \in U_q : (u-1)(u+1)(u^2+1) \in U_q\}$.

2. Need more "pure analytic" arguments: modify some powerful methods used to estimate mean values of multiplicative functions.

- **2.** Need more "pure analytic" arguments: modify some powerful methods used to estimate mean values of multiplicative functions.
- **3.** Linear algebra over rings: use Smith normal forms to bound certain character sums.

- **2.** Need more "pure analytic" arguments: modify some powerful methods used to estimate mean values of multiplicative functions.
- **3.** Linear algebra over rings: use Smith normal forms to bound certain character sums.
- **4.** Need bounds on \mathbb{F}_{ℓ} -rational points of certain affine varieties over $\overline{\mathbb{F}}_{\ell}$.

- **2.** Need more "pure analytic" arguments: modify some powerful methods used to estimate mean values of multiplicative functions.
- **3.** Linear algebra over rings: use Smith normal forms to bound certain character sums.
- **4.** Need bounds on \mathbb{F}_{ℓ} -rational points of certain affine varieties over $\overline{\mathbb{F}}_{\ell}$.
- Need to consider certain regular sequences in $\overline{\mathbb{F}}_{\ell}[X_1,\ldots,X_r]$.

Mixing phenomenon in unit group mod q will be detected using those $n \le x$ that have several very large prime factors.

Mixing phenomenon in unit group mod q will be detected using those $n \le x$ that have several very large prime factors.

Several: Parameter $J = J(x) \in \mathbb{N}$ going to infinity very very slowly.

Mixing phenomenon in unit group mod q will be detected using those $n \le x$ that have several very large prime factors.

Several: Parameter $J = J(x) \in \mathbb{N}$ going to infinity very very slowly.

Very large: Parameter y = y(x) s.t. past y, primes are very regularly distributed in coprime residue classes mod q, when $q \leq (\log x)^{K_0}$.

Mixing phenomenon in unit group mod q will be detected using those $n \le x$ that have several very large prime factors.

Several: Parameter $J = J(x) \in \mathbb{N}$ going to infinity very very slowly.

Very large: Parameter y = y(x) s.t. past y, primes are very regularly distributed in coprime residue classes mod q, when $q \leq (\log x)^{K_0}$.

Convenient n: $n \le x$ s.t. the J largest prime factors of n are > y and distinct.

Mixing phenomenon in unit group mod q will be detected using those $n \le x$ that have several very large prime factors.

Several: Parameter $J = J(x) \in \mathbb{N}$ going to infinity very very slowly.

Very large: Parameter y = y(x) s.t. past y, primes are very regularly distributed in coprime residue classes mod q, when $q \leq (\log x)^{K_0}$.

Convenient $n: n \le x$ s.t. the J largest prime factors of n are > y and distinct. In other words, $n = mP_J \dots P_1$, where

$$\max\{y, P(m)\} < P_J < \cdots < P_1.$$

Mixing phenomenon in unit group mod q will be detected using those $n \le x$ that have several very large prime factors.

Several: Parameter $J = J(x) \in \mathbb{N}$ going to infinity very very slowly.

Very large: Parameter y = y(x) s.t. past y, primes are very regularly distributed in coprime residue classes mod q, when $q \le (\log x)^{K_0}$.

Convenient n: $n \le x$ s.t. the J largest prime factors of n are > y and distinct. In other words, $n = mP_J \dots P_1$, where

$$\max\{y, P(m)\} < P_J < \cdots < P_1.$$

Convenient $n \le x$ give dominant contribution: After some careful "anatomical" arguments, we can reduce proving Theorems 4 and 5 to showing that

Theorem 6 (Workhorse Result).

Let $f = \varphi \sigma \sigma_2$. As $x \to \infty$, we have

$$\begin{split} \#\{n \leq x \ \operatorname{conv}: (\varphi, \sigma, \sigma_2)(n) &\equiv (a_1, a_2, a_3) \pmod{q} \} \\ &\sim \frac{1}{\varphi(q)^3} \#\{n \leq x : \gcd(f(n), q) = 1\}, \end{split}$$

uniformly in $q \leq (\log x)^{K_0}$ s.t. $P^-(q) > 23$ and uniformly in $a_i \in U_q$.

Theorem 6 (Workhorse Result).

Let $f = \varphi \sigma \sigma_2$. As $x \to \infty$, we have

$$\begin{split} \#\{n \leq x \ \operatorname{conv}: (\varphi, \sigma, \sigma_2)(n) &\equiv (a_1, a_2, a_3) \pmod{q} \} \\ &\sim \frac{1}{\varphi(q)^3} \#\{n \leq x : \gcd(f(n), q) = 1\}, \end{split}$$

uniformly in $q \leq (\log x)^{K_0}$ s.t. $P^-(q) > 23$ and uniformly in $a_i \in U_q$.

First step: Reduction to bounded divisor

Proposition 1.

In the above setting, there exists $Q_0 \mid q$ s.t. $Q_0 = O(1)$ and

$$\#\{n \le x \text{ conv} : (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{q}\}$$

$$\approx \frac{1}{\varphi(q)^3} \cdot \varphi(Q_0)^3 \#\{n \le x : (f(n), q) = 1,$$

$$(\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{Q_0}\}$$

The first step: Reduction to bounded modulus.

Any convenient n can be written as $mP_J \dots P_1$ where $\max\{y, P(m)\} < P_J < \dots < P_1$. Then $\varphi(n) = \varphi(m) \prod_{i=1}^J (P_i - 1)$.

The first step: Reduction to bounded modulus.

Any convenient n can be written as $mP_J \dots P_1$ where $\max\{y, P(m)\} < P_J < \dots < P_1$. Then $\varphi(n) = \varphi(m) \prod_{j=1}^J (P_j - 1)$. So $\varphi(n) \equiv a_1 \pmod{q} \implies \prod_{j=1}^J (P_j - 1) \equiv a_1 \varphi(m)^{-1} \mod{q}$.

The first step: Reduction to bounded modulus.

Any convenient n can be written as $mP_J \dots P_1$ where $\max\{y, P(m)\} < P_J < \dots < P_1$. Then $\varphi(n) = \varphi(m) \prod_{j=1}^J (P_j - 1)$. So $\varphi(n) \equiv a_1 \pmod{q} \implies \prod_{j=1}^J (P_j - 1) \equiv a_1 \varphi(m)^{-1} \mod{q}$.

Thus

$$\varphi(n) \equiv a_1, \ \sigma(n) \equiv a_2, \ \sigma_2(n) \equiv a_3 \bmod q$$

$$\iff (P_1, \dots, P_J) \equiv (v_1, \dots, v_J) \bmod q$$

for some $(v_1, \ldots, v_J) \in U_a^J$ satisfying:

(i)
$$\prod_{j=1}^{J} (v_j - 1) \equiv a_1 \varphi(m)^{-1}$$
, (ii) $\prod_{j=1}^{J} (v_j + 1) \equiv a_2 \sigma(m)^{-1}$, (iii) $\prod_{j=1}^{J} (v_j^2 + 1) \equiv a_3 \sigma_2(m)^{-1}$ (mod q).

Let $V_{q,m}$ denote the set of such (v_1, \ldots, v_J) .

$$\sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } q}} 1 \ \approx \ \sum_{\substack{m \leq x \\ \text{blah}}} \frac{\#V_{q,m}}{\varphi(q)^J} \sum_{\substack{P_1, \dots, P_J \\ \text{more blah}}} 1$$

$$\sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (\mathsf{a_1}, \mathsf{a_2}, \mathsf{a_3}) \text{ mod } q}} 1 \quad \approx \quad \sum_{\substack{m \leq x \\ \text{blah}}} \frac{\# V_{q,m}}{\varphi(q)^J} \sum_{\substack{P_1, \dots, P_J \\ \text{more blah}}} 1$$

Fact 1: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$ and uniformly in m,

$$\frac{\#V_{q,m}}{\varphi(q)^J} \approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \cdot \left(\frac{\alpha(q)}{\alpha(Q_0)}\right)^J \frac{\#V_{Q_0,m}}{\varphi(Q_0)^J}.$$

$$\sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } q}} 1 \quad \approx \quad \sum_{\substack{m \leq x \\ \text{blah}}} \frac{\#V_{q,m}}{\varphi(q)^J} \sum_{\substack{P_1, \dots, P_J \\ \text{more blah}}} 1$$

Fact 1: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$ and uniformly in m,

$$\frac{\#V_{q,m}}{\varphi(q)^J} \approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \cdot \left(\frac{\alpha(q)}{\alpha(Q_0)}\right)^J \frac{\#V_{Q_0,m}}{\varphi(Q_0)^J}.$$

One key ingredient: Character sum bounds (Wan, Cochrane).

$$\sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } q}} 1 \approx \sum_{\substack{m \leq x \\ \text{blah}}} \frac{\#V_{q,m}}{\varphi(q)^J} \sum_{\substack{P_1, \dots, P_J \\ \text{more blah}}} 1$$

Fact 1: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$ and uniformly in m,

$$\frac{\#V_{q,m}}{\varphi(q)^J} \approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \cdot \left(\frac{\alpha(q)}{\alpha(Q_0)}\right)^J \frac{\#V_{Q_0,m}}{\varphi(Q_0)^J}.$$

One key ingredient: Character sum bounds (Wan, Cochrane). A less standard key ingredient: Linear algebra over rings.

Note: Here, it is crucial that the three polynomials T-1, T+1 and T^2+1 are "multiplicatively independent" over \mathbb{Z} , i.e, for any integers $(c_1,c_2,c_3)\neq (0,0,0)$, we have $(T-1)^{c_1}(T+1)^{c_2}(T^2+1)^{c_3}\neq$ constant.

$$\sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } q}} 1 \approx \sum_{\substack{m \leq x \\ \text{blah}}} \frac{\#V_{q,m}}{\varphi(q)^J} \sum_{\substack{P_1, \dots, P_J \\ \text{more blah}}} 1$$

Fact 1: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$ and uniformly in m,

$$\frac{\#V_{q,m}}{\varphi(q)^J} \approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \cdot \left(\frac{\alpha(q)}{\alpha(Q_0)}\right)^J \frac{\#V_{Q_0,m}}{\varphi(Q_0)^J}.$$

One key ingredient: Character sum bounds (Wan, Cochrane).

A less standard key ingredient: Linear algebra over rings.

Note: Here, it is crucial that the three polynomials T-1, T+1 and T^2+1 are "multiplicatively independent" over \mathbb{Z} , i.e, for any integers $(c_1,c_2,c_3)\neq (0,0,0)$, we have $(T-1)^{c_1}(T+1)^{c_2}(T^2+1)^{c_3}\neq$ constant. To apply character sum bounds, it is important that "multiplicative independence" over \mathbb{Z} continues to prevail mod large prime powers (interpreted suitably) .

17 of 35

Combining,

$$\begin{split} \sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } q}} 1 \\ \approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \cdot \left(\frac{\alpha(q)}{\alpha(Q_0)}\right)^J \sum_{m \leq x} \frac{\#V_{Q_0, m}}{\varphi(Q_0)^J} \sum_{P_1, \dots, P_J} 1. \end{split}$$

Combining,

$$\begin{split} \sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } q}} 1 \\ \approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \cdot \left(\frac{\alpha(q)}{\alpha(Q_0)}\right)^J \sum_{\substack{m \leq x \\ \text{blah}}} \frac{\#V_{Q_0, m}}{\varphi(Q_0)^J} \sum_{\substack{P_1, \dots, P_J \\ \text{more blah}}} 1. \end{split}$$

After some more technical arguments,

$$\sum_{\substack{n \leq x \text{ conv} \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } q}} 1 \approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \sum_{\substack{n \leq x: \ (f(n), q) = 1 \\ (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \text{ mod } Q_0}} 1.$$

This completes our initial reduction step (to bounded modulus Q_0).

The analytic argument I

We have shown: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$, and

$$\begin{aligned}
&\#\{n \leq x \text{ conv} : (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{q}\}\\ &\approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \#\{n \leq x : (f(n), q) = 1, (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{Q_0}\}\end{aligned}$$

The analytic argument I

We have shown: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$, and

$$\#\{n \leq x \text{ conv}: (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{q}\}$$

$$\approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \#\{n \leq x : (f(n),q) = 1, (\varphi,\sigma,\sigma_2)(n) \equiv (a_1,a_2,a_3) \pmod{Q_0}\}$$

Wanted to show (for Theorem 6, Workhorse Result):

$$\mathsf{LHS} \approx \frac{1}{\varphi(q)^3} \# \{ n \leq x : \gcd(f(n), q) = 1 \}$$

The analytic argument I

We have shown: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$, and

$$\#\{n \leq x \text{ conv} : (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{q}\}$$

$$\approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \#\{n \leq x : (f(n),q) = 1, (\varphi,\sigma,\sigma_2)(n) \equiv (a_1,a_2,a_3) \pmod{Q_0}\}$$

Wanted to show (for Theorem 6, Workhorse Result):

$$\mathsf{LHS} \approx \frac{1}{\varphi(q)^3} \# \{ n \leq x : \gcd(f(n), q) = 1 \}$$

Now apply orthogonality to detect congruences mod Q_0 .

The analytic argument I

We have shown: $\exists Q_0 \mid q \text{ s.t. } Q_0 = O(1)$, and

$$\#\{n \leq x \text{ conv} : (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{q}\}$$

$$\approx \left(\frac{\varphi(Q_0)}{\varphi(q)}\right)^3 \#\{n \leq x : (f(n), q) = 1, (\varphi, \sigma, \sigma_2)(n) \equiv (a_1, a_2, a_3) \pmod{Q_0}\}$$

Wanted to show (for Theorem 6, Workhorse Result):

$$\mathsf{LHS} \approx \frac{1}{\varphi(q)^3} \# \{ n \leq x : \gcd(f(n), q) = 1 \}$$

Now apply orthogonality to detect congruences mod Q_0 . Enough to show: *Proposition 2.*

For any $\widehat{\chi} = (\chi_1, \chi_2, \chi_3) \neq (\chi_0, \chi_0, \chi_0) \mod Q_0$, the sum

$$\sum_{n \leq x} \mathbb{1}_{(f(n),q)=1} \cdot \chi_1(\varphi(n)) \chi_2(\sigma(n)) \chi_3(\sigma_2(n))$$

is negligible compared to $\#\{n \le x : \gcd(f(n), q) = 1\}$.

19 of 35

 $\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$ is **not** constant on its support.

$$\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$$
 is **not** constant on its support.

Key tool:

Theorem 7 (Halász).

Let F be a multiplicative function s.t. $|F(n)| \le 1$ for all n. For $x, T \ge 2$,

$$\frac{1}{x}\sum_{n\leq x}F(n)\ll\frac{1}{T}+\exp\left(-\min_{|t|\leq T}\sum_{p\leq x}\frac{1-\mathrm{Re}(F(p)p^{-it})}{p}\right).$$

$$\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$$
 is **not** constant on its support.

Key tool:

Theorem 7 (Halász).

Let F be a multiplicative function s.t. $|F(n)| \le 1$ for all n. For $x, T \ge 2$,

$$\frac{1}{x} \sum_{n \le x} F(n) \ll \frac{1}{T} + \exp \left(-\min_{|t| \le T} \sum_{p \le x} \frac{1 - \operatorname{Re}(F(p)p^{-it})}{p} \right).$$

Apply this to $F(n) = \mathbb{1}_{(f(n),q)=1} \cdot \chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$.

$$\sum_{p\leq x}^* \frac{1}{p} \cdot \left(1 - \text{Re}(p^{-it}\chi_1(p-1)\chi_2(p+1)\chi_3(p^2+1))\right).$$

$$\sum_{p\leq x}^* \frac{1}{p} \cdot \left(1 - \operatorname{Re}(p^{-it}\chi_1(p-1)\chi_2(p+1)\chi_3(p^2+1))\right).$$

Cover the range of summation with "multiplicatively narrow" intervals of the form $(\eta, \eta(1 + o(1))]$

$$\sum_{p\leq x}^* \frac{1}{p} \cdot \left(1 - \operatorname{Re}(p^{-it}\chi_1(p-1)\chi_2(p+1)\chi_3(p^2+1))\right).$$

Cover the range of summation with "multiplicatively narrow" intervals of the form $(\eta, \eta(1+o(1))]$ and observe that $p^{-it}=e^{-it\log p}$ remains roughly constant on each of these intervals.

$$\sum_{p\leq x}^* \frac{1}{p} \cdot \left(1 - \operatorname{Re}(p^{-it}\chi_1(p-1)\chi_2(p+1)\chi_3(p^2+1))\right).$$

Cover the range of summation with "multiplicatively narrow" intervals of the form $(\eta, \eta(1+o(1))]$ and observe that $p^{-it} = e^{-it \log p}$ remains roughly constant on each of these intervals.

Use Siegel-Walfisz to estimate the rest of the sum.

$$\sum\nolimits_{p \le x}^* \frac{1}{p} \cdot \left(1 - \text{Re}(p^{-it}\chi_1(p-1)\chi_2(p+1)\chi_3(p^2+1)) \right).$$

Cover the range of summation with "multiplicatively narrow" intervals of the form $(\eta, \eta(1+o(1))]$ and observe that $p^{-it}=e^{-it\log p}$ remains roughly constant on each of these intervals.

Use Siegel-Walfisz to estimate the rest of the sum.

Remark: For the resulting lower bound to be nontrivial, we need our hypothesis that $\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$ is **not** constant on its support.

$$\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$$
 is constant on its support.

Recall: Want to show that

$$\sum_{n\leq x} \mathbb{1}_{(f(n),q)=1} \cdot \chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$$

is negligible compared to the main term $\#\{n \le x : \gcd(f(n), q) = 1\}$.

$$\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$$
 is constant on its support.

Recall: Want to show that

$$\sum_{n\leq x} \mathbb{1}_{(f(n),q)=1} \cdot \chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$$

is negligible compared to the main term $\#\{n \le x : \gcd(f(n), q) = 1\}$.

Key idea: Modify the Landau-Selberg-Delange (LSD) method.

$$\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$$
 is constant on its support.

Recall: Want to show that

$$\sum_{n\leq x} \mathbb{1}_{(f(n),q)=1} \cdot \chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$$

is negligible compared to the main term $\#\{n \le x : \gcd(f(n), q) = 1\}$.

Key idea: Modify the Landau-Selberg-Delange (LSD) method.

Usual LSD method (Tenenbaum): Give precise estimates for $\sum_{n\leq x}a_n$, if we know that $\sum_{n\geq 1}a_n/n^s\approx \zeta(s)^z$ for some $z\in\mathbb{C}$.

$$\mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1)$$
 is constant on its support.

Recall: Want to show that

$$\sum_{n\leq x} \mathbb{1}_{(f(n),q)=1} \cdot \chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$$

is negligible compared to the main term $\#\{n \leq x : \gcd(f(n), q) = 1\}$.

Key idea: Modify the Landau-Selberg-Delange (LSD) method.

Usual LSD method (Tenenbaum): Give precise estimates for $\sum_{n\leq x}a_n$, if we know that $\sum_{n\geq 1}a_n/n^s\approx \zeta(s)^z$ for some $z\in\mathbb{C}$.

Note: Possible essential singularity at s = 1.

The modification

We identify our sum

$$\sum_{n\leq x} \mathbb{1}_{(f(n),q)=1} \cdot \chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$$

as the partial sum of the Dirichlet series

$$F_{\widehat{\chi}}(s) = \sum_{n=1}^{\infty} \frac{\mathbb{1}_{(f(n),q)=1}}{n^s} \cdot \chi_1(\varphi(n)) \chi_2(\sigma(n)) \chi_3(\sigma_2(n)).$$

The modification

We identify our sum

$$\sum_{n\leq x}\mathbb{1}_{(f(n),q)=1}\cdot\chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$$

as the partial sum of the Dirichlet series

$$F_{\widehat{\chi}}(s) = \sum_{n=1}^{\infty} \frac{\mathbb{1}_{(f(n),q)=1}}{n^s} \cdot \chi_1(\varphi(n)) \chi_2(\sigma(n)) \chi_3(\sigma_2(n)).$$

But here

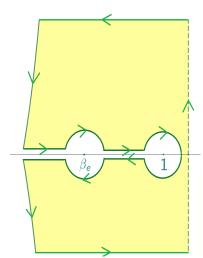
$$F_{\widehat{\chi}}(s) pprox \left(\prod_{egin{array}{c} d \mid q \ d ext{ sofree} \ \psi \ ext{ primitive}} L(s,\psi)^{\gamma(\psi)}
ight)^{lpha(q)c_{\widehat{\chi}}}$$

Here
$$c_{\widehat{\chi}} = \mathbb{1}_{(u,Q_0)=1} \cdot \chi_1(u-1)\chi_2(u+1)\chi_3(u^2+1) \neq 0.$$

Note: Two possible essential singularities, at s=1 and $s=\beta_e$.

Note: Two possible essential singularities, at s = 1 and $s = \beta_e$.

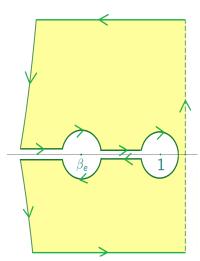
So we modify the usual "LSD contour" into the adjacent one.



Note: Two possible essential singularities, at s=1 and $s=\beta_e$.

So we modify the usual "LSD contour" into the adjacent one.

Technicalities: almost entirely different from usual LSD (partly inspired from work of Scourfield).



So we modify the usual "LSD contour" into the adjacent one.

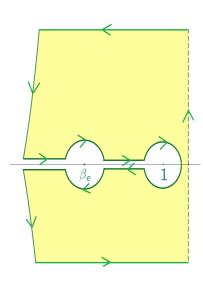
Technicalities: almost entirely different from usual LSD (partly inspired from work of Scourfield).

After a lot of technical work, we deduce that if $P^-(q) > 23$, then

$$\sum_{n\leq x}\mathbb{1}_{(f(n),q)=1}\cdot\chi_1(\varphi(n))\chi_2(\sigma(n))\chi_3(\sigma_2(n))$$

is negligible compared to the main term $\#\{n \le x : \gcd(f(n), q) = 1\}$.

This completes the proof of our Workhorse result Theorem 6, and hence also of Theorems 4 and 5.



Consider multiplicative functions $f_1, \ldots, f_K : \mathbb{N} \to \mathbb{Z}$ and polynomials $\{W_{i,v}\}_{\substack{1 \le i \le K \\ 1 \le v \le V}} \subset \mathbb{Z}[T]$, such that $f_i(p^v) = W_{i,v}(p)$.

$$\begin{pmatrix} W_{1,1} & W_{1,2} & \dots & \dots & W_{1,V} \\ W_{2,1} & W_{2,2} & \dots & \dots & W_{2,V} \\ \dots & \dots & \dots & \dots & \dots \\ W_{K,1} & W_{K,2} & \dots & \dots & W_{K,V} \end{pmatrix}_{K\times V}$$

Consider multiplicative functions $f_1, \ldots, f_K : \mathbb{N} \to \mathbb{Z}$ and polynomials $\{W_{i,v}\}_{\substack{1 \le i \le K \\ 1 \le v \le V}} \subset \mathbb{Z}[T]$, such that $f_i(p^v) = W_{i,v}(p)$.

$$\begin{pmatrix} W_{1,1} & W_{1,2} & \dots & \dots & W_{1,V} \\ W_{2,1} & W_{2,2} & \dots & \dots & W_{2,V} \\ \dots & \dots & \dots & \dots & \dots \\ W_{K,1} & W_{K,2} & \dots & \dots & W_{K,V} \end{pmatrix}_{K \times V}$$

Note: For φ , σ , σ ₂, only the first column of the matrix mattered,

Consider multiplicative functions $f_1, \ldots, f_K : \mathbb{N} \to \mathbb{Z}$ and polynomials $\{W_{i,v}\}_{\substack{1 \le i \le K \\ 1 \le v \le V}} \subset \mathbb{Z}[T]$, such that $f_i(p^v) = W_{i,v}(p)$.

$$\begin{pmatrix} W_{1,1} & W_{1,2} & \dots & \dots & W_{1,V} \\ W_{2,1} & W_{2,2} & \dots & \dots & W_{2,V} \\ \dots & \dots & \dots & \dots & \dots \\ W_{K,1} & W_{K,2} & \dots & \dots & W_{K,V} \end{pmatrix}_{K \times V}$$

Note: For $\varphi, \sigma, \sigma_2$, only the first column of the matrix mattered, as $\{u \in U_q : u-1, u+1, u^2+1 \in U_q\} \neq \emptyset$.

Consider multiplicative functions $f_1, \ldots, f_K : \mathbb{N} \to \mathbb{Z}$ and polynomials $\{W_{i,v}\}_{\substack{1 \le i \le K \\ 1 \le v \le V}} \subset \mathbb{Z}[T]$, such that $f_i(p^v) = W_{i,v}(p)$.

$$\begin{pmatrix} W_{1,1} & W_{1,2} & \dots & \dots & W_{1,V} \\ W_{2,1} & W_{2,2} & \dots & \dots & W_{2,V} \\ \dots & \dots & \dots & \dots & \dots \\ W_{K,1} & W_{K,2} & \dots & \dots & W_{K,V} \end{pmatrix}_{K \times V}$$

Note: For $\varphi, \sigma, \sigma_2$, only the first column of the matrix mattered, as $\{u \in U_q : u-1, u+1, u^2+1 \in U_q\} \neq \emptyset$. In general this may not happen!

Consider multiplicative functions $f_1, \ldots, f_K : \mathbb{N} \to \mathbb{Z}$ and polynomials $\{W_{i,v}\}_{\substack{1 \leq i \leq K \\ 1 \leq v \leq V}} \subset \mathbb{Z}[T]$, such that $f_i(p^v) = W_{i,v}(p)$.

$$\begin{pmatrix} W_{1,1} & W_{1,2} & \dots & \dots & W_{1,V} \\ W_{2,1} & W_{2,2} & \dots & \dots & W_{2,V} \\ \dots & \dots & \dots & \dots & \dots \\ W_{K,1} & W_{K,2} & \dots & \dots & W_{K,V} \end{pmatrix}_{K \times V}$$

Note: For $\varphi, \sigma, \sigma_2$, only the first column of the matrix mattered, as $\{u \in U_q : u-1, u+1, u^2+1 \in U_q\} \neq \emptyset$. In general this may not happen!

```
Given k \in \{1, \ldots, V\}, we say that q is k-admissible if \{u \in U_q : (\forall i) \ W_{i,k}(u) \in U_q\} \neq \emptyset, but \{u \in U_q : (\forall i) \ W_{i,v}(u) \in U_q\} = \emptyset, for each 1 \leq v \leq k-1.
```

Notation: For a fixed $k \in \{1, ..., V\}$, define

 $\mathcal{Q}(\textit{k};\textit{f}_1,\cdots,\textit{f}_{\textit{K}}) \coloneqq \{\textit{q}: \textit{q} \text{ is } \textit{k}\text{-admissible, } \textit{f}_1,\ldots,\textit{f}_{\textit{K}} \text{ are jointly WUD mod } \textit{q}\}.$

Narkiewicz (1982): Complete description of $Q(k; f_1, \dots, f_K)$.

Notation: For a fixed $k \in \{1, ..., V\}$, define

 $\mathcal{Q}(\textit{k};\textit{f}_{1},\cdots,\textit{f}_{\textit{K}}) \coloneqq \{\textit{q}: \textit{q} \text{ is } \textit{k}\text{-admissible}, \textit{f}_{1},\ldots,\textit{f}_{\textit{K}} \text{ are jointly WUD mod } \textit{q}\}.$

Narkiewicz (1982): Complete description of $Q(k; f_1, \dots, f_K)$.

We give uniform analogues of Narkiewicz's result, which are best possible in the range and arithmetic restrictions on q. We just need two technical hypotheses H_1 and H_2 , which we can prove to be necessary.

Let
$$\alpha_k(q) = \frac{1}{\varphi(q)} \# \{ u \in U_q : \prod_{i=1}^K W_{i,k}(u) \in U_q \}$$
 and $D_{\min} = \min_{1 \le i \le K} \deg(W_{i,k}).$

Theorem 8 (S.R., 2023).

Fix $K_0 > 0$ and $\epsilon \in (0,1)$. Under H_1 and H_2 , the functions f_1, \ldots, f_K are jointly WUD, uniformly modulo $q \in \mathcal{Q}(k; f_1, \cdots, f_K)$, provided any one of the following holds.

(i)
$$q \leq \begin{cases} (\log x)^{K_0}, & \text{if } K = 1 \text{ and } W_{1,k} \text{ is linear.} \\ (\log x)^{(1-\epsilon)\alpha_k(q)(K-1/D_{min})^{-1}}, & \text{otherwise.} \end{cases}$$

(ii) q is squarefree and $q^{K-1}D_{min}^{\omega(q)} \leq (\log x)^{(1-\epsilon)\alpha_k(q)}$.

Let
$$\alpha_k(q) = \frac{1}{\varphi(q)} \# \{ u \in U_q : \prod_{i=1}^K W_{i,k}(u) \in U_q \}$$
 and $D_{\min} = \min_{1 \leq i \leq K} \deg(W_{i,k}).$

Theorem 8 (S.R., 2023).

Fix $K_0 > 0$ and $\epsilon \in (0,1)$. Under H_1 and H_2 , the functions f_1, \ldots, f_K are jointly WUD, uniformly modulo $q \in \mathcal{Q}(k; f_1, \cdots, f_K)$, provided any one of the following holds.

(i)
$$q \leq \begin{cases} (\log x)^{K_0}, & \text{if } K = 1 \text{ and } W_{1,k} \text{ is linear.} \\ (\log x)^{(1-\epsilon)\alpha_k(q)(K-1/D_{min})^{-1}}, & \text{otherwise.} \end{cases}$$

(ii) q is squarefree and $q^{K-1}D_{min}^{\omega(q)} \leq (\log x)^{(1-\epsilon)\alpha_k(q)}$.

Optimality: This result is essentially optimal in the arithmetic restrictions on q as well as in the hypotheses H_1 and H_2 . Also, second case of (i) and (ii) are optimal in the range of q.

As for $\varphi, \sigma, \sigma_2$, we need to restrict our input sets to get complete uniformity up to arbitrary powers of $\log x$. Fix $K_0 > 0$.

Theorem 9 (S.R., 2023).

Fix $K_0 > 0$. Under H_1 and H_2 , we have

$$\begin{split} \#\{n \leq x : P_R(n) > q, & (\forall i) \ f_i(n) \equiv a_i \pmod{q}\} \\ & \sim \frac{1}{\varphi(q)^K} \#\left\{n \leq x : P_R(n) > q, \ \gcd(\prod_{i=1}^K f_i(n), q) = 1\right\}, \end{split}$$

uniformly in $q \leq (\log x)^{K_0}$ lying in $Q(k; f_1, \dots, f_K)$ and in $a_1, \dots, a_K \in U_q$. Here

- 1. $R = \max\{k(KD+1), k(1+(k+1)(K-1/D))\}\$ for general q.
- 2. If g is squarefree and k > 2, then

$$R = \begin{cases} k(Kk+K-k)+1, & \text{if one of } \{W_{i,k}\}_{i=1}^K \text{ not sqfull.} \\ k(Kk+K-k+1)+1, & \text{in general.} \end{cases}$$

3. If q is squarefree and k=1, then R=2K+1. Further, if k=K=1 and $W_{1,k}$ is not squarefull, then R=2.

As for $\varphi, \sigma, \sigma_2$, we need to restrict our input sets to get complete uniformity up to arbitrary powers of $\log x$. Fix $K_0 > 0$.

Theorem 9 (S.R., 2023).

Fix $K_0 > 0$. Under H_1 and H_2 , we have

$$\begin{split} \#\{n \leq x : P_R(n) > q, & (\forall i) \ f_i(n) \equiv a_i \pmod{q}\} \\ & \sim \frac{1}{\varphi(q)^K} \#\left\{n \leq x : P_R(n) > q, \ \gcd(\prod_{i=1}^K f_i(n), q) = 1\right\}, \end{split}$$

uniformly in $q \leq (\log x)^{\kappa_0}$ lying in $\mathcal{Q}(k; f_1, \dots, f_K)$ and in $a_1, \dots, a_K \in U_q$. Here

- 1. $R = \max\{k(KD+1), k(1+(k+1)(K-1/D))\}\$ for general q.
- 2. If q is squarefree and k > 2, then

$$R = \begin{cases} k(Kk+K-k)+1, & \text{if one of } \{W_{i,k}\}_{i=1}^K \text{ not sqfull.} \\ k(Kk+K-k+1)+1, & \text{in general.} \end{cases}$$

3. If q is squarefree and k = 1, then R = 2K + 1. Further, if k = K = 1 and $W_{1,k}$ is not squarefull, then R = 2.

Optimality: Most of these *R*'s are either exactly or nearly optimal, ensuring joint WUD among as large a set of inputs as possible.

Question: Can we say anything about the deviation of $\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}$ from its expected value $\frac{1}{\varphi(q)^K} \#\{n \leq x, (\forall i) \ \gcd(f_i(n), q) = 1\}$, uniformly for $q \leq (\log x)^{K_0}$?

Question: Can we say anything about the deviation of $\#\{n \le x : (\forall i) \ f_i(n) \equiv a_i \pmod q\}$ from its expected value $\frac{1}{\varphi(q)^K} \#\{n \le x, (\forall i) \ \gcd(f_i(n), q) = 1\}$, uniformly for $q \le (\log x)^{K_0}$?

Rate of convergence? Second-order behavior?

Question: Can we say anything about the deviation of $\#\{n \le x : (\forall i) \ f_i(n) \equiv a_i \pmod q\}$ from its expected value $\frac{1}{\varphi(q)^K} \#\{n \le x, (\forall i) \ \gcd(f_i(n), q) = 1\}$, uniformly for $q \le (\log x)^{K_0}$?

Rate of convergence? Second-order behavior?

Previous methods: say nothing (worthwhile)!

Question: Can we say anything about the deviation of $\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod q\}$ from its expected value $\frac{1}{\varphi(q)^K} \#\{n \leq x, (\forall i) \ \gcd(f_i(n), q) = 1\}$, uniformly for $q \leq (\log x)^{K_0}$?

Rate of convergence? Second-order behavior?

Previous methods: say nothing (worthwhile)!

To say something interesting, we will need <u>precise</u> asymptotics for the sums $\sum_{n \le x} \chi_1(f_1(n)) \dots \chi_K(f_K(n))$ in the full range $q \le (\log x)^{K_0}$.

General question (extension of LSD): Assuming that

 $\sum_{n\geq 1} a_n/n^s \approx \prod_{\chi \bmod q} L(sk,\chi)^{\alpha_\chi}$, give **precise** asymptotic series estimating $\sum_{n\leq x} a_n$ uniformly in q in a wide range.

General question (extension of LSD): Assuming that $\sum_{n\geq 1} a_n/n^s \approx \prod_{\chi \bmod q} L(sk,\chi)^{\alpha_\chi}$, give precise asymptotic series estimating $\sum_{n\leq x} a_n$ uniformly in q in a wide range.

Theorem 10 (S.R. 2024, in preparation).

Fix $K_0 > 0$. In the above setting and under some natural additional hypotheses, we have

$$\sum_{n \le x} a_n = \frac{x^{1/k}}{(\log x)^{1-\alpha_{\chi_0}}} \sum_{0 \le j \le N} \frac{\mu_j}{(\log x)^j} + O(\text{error term}),$$

uniformly in $x \ge 3$, $N \ge 0$ and $q \le (\log x)^{K_0}$. The error term is genuinely smaller than the main term in the full range $q \le (\log x)^{K_0}$.

- **1.** Estimate $\#\{n \le x : \gcd(f(n), q) = 1\}$ for large classes of multiplicative functions f.
- Rankin, Serre, Spearman–Williams, Narkiewicz, Ford–Luca–Moree, etc.: specific examples of interesting *f* and fixed *q*.

- **1.** Estimate $\#\{n \le x : \gcd(f(n), q) = 1\}$ for large classes of multiplicative functions f.
- Rankin, Serre, Spearman–Williams, Narkiewicz, Ford–Luca–Moree, etc.: specific examples of interesting *f* and fixed *q*.
- Scourfield: varying q and f well-controlled on primes,

- **1.** Estimate $\#\{n \le x : \gcd(f(n), q) = 1\}$ for large classes of multiplicative functions f.
- Rankin, Serre, Spearman–Williams, Narkiewicz, Ford–Luca–Moree, etc.: specific examples of interesting *f* and fixed *q*.
- Scourfield: varying q and f well-controlled on primes,
- Theorem 10: precise estimates for larger classes of f, **uniformly** in $q \leq (\log x)^{K_0}$.
- Extra generality with "k" allows us to consider more interesting varieties of f and q, for which behavior of f at higher prime powers becomes crucial. (Eg.: $\sigma(n)$ for $2 \mid q$: Behavior at p^2 matters.)

2. Applications in non-equidistribution settings:

(1) Positive integers with prime divisors restricted to residue classes: Given $q \in \mathbb{N}$ and $A \subset U_q$, estimate $\#\{n \leq x : p \mid n \implies p \bmod q \in A\}$.

2. Applications in non-equidistribution settings:

(1) Positive integers with prime divisors restricted to residue classes:

Given $q \in \mathbb{N}$ and $\mathcal{A} \subset U_q$, estimate

$$\#\{n \le x : p \mid n \implies p \mod q \in A\}.$$

 \circ Landau (1908): Does this for fixed q and A.

- (1) Positive integers with prime divisors restricted to residue classes:
 - Given $q \in \mathbb{N}$ and $\mathcal{A} \subset U_q$, estimate

$$\#\{n \le x : p \mid n \implies p \mod q \in A\}.$$

- Landau (1908): Does this for fixed q and A.
- \circ Theorem 10: Uniformly in $q \leq (\log x)^{K_0}$ and $\mathcal{A} \subset U_q$.

- (1) Positive integers with prime divisors restricted to residue classes:
 - Given $q \in \mathbb{N}$ and $\mathcal{A} \subset U_q$, estimate
 - $\#\{n \leq x : p \mid n \implies p \mod q \in A\}.$
 - Landau (1908): Does this for fixed q and A.
 - Theorem 10: Uniformly in $q \leq (\log x)^{K_0}$ and $\mathcal{A} \subset U_q$.
- (2) Distributions of the least invariant factor of multiplicative groups:
 - Writing $U_n = \mathbb{Z}/\lambda_1\mathbb{Z} \oplus \mathbb{Z}/\lambda_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/\lambda_r\mathbb{Z}$ with

$$\lambda_1 \mid \lambda_2 \mid \cdots \mid \lambda_r$$
, let $\lambda_1(n) \coloneqq \lambda_1$. Estimate $\#\{n \le x : \lambda_1(n) = d\}$.

- (1) Positive integers with prime divisors restricted to residue classes:
 - Given $q \in \mathbb{N}$ and $\mathcal{A} \subset U_q$, estimate
 - $\#\{n \le x : p \mid n \implies p \mod q \in A\}.$
 - Landau (1908): Does this for fixed q and A.
 - \circ Theorem 10: Uniformly in $q \leq (\log x)^{K_0}$ and $\mathcal{A} \subset U_q$.
- (2) Distributions of the least invariant factor of multiplicative groups:
 - Writing $U_n = \mathbb{Z}/\lambda_1\mathbb{Z} \oplus \mathbb{Z}/\lambda_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/\lambda_r\mathbb{Z}$ with $\lambda_1 \mid \lambda_2 \mid \cdots \mid \lambda_r$, let $\lambda_1(n) \coloneqq \lambda_1$. Estimate $\#\{n \le x : \lambda_1(n) = d\}$.
 - $\lambda_1 \mid \lambda_2 \mid \cdots \mid \lambda_r$, let $\lambda_1(n) = \lambda_1$. Estimate $\#\{n \leq x : \lambda_1(n) = u\}$
 - Chang–Martin (2020): Do this for fixed d.

- (1) Positive integers with prime divisors restricted to residue classes:
 - Given $g \in \mathbb{N}$ and $A \subset U_g$, estimate
 - $\#\{n \le x : p \mid n \implies p \mod q \in A\}.$
 - Landau (1908): Does this for fixed q and A.
 - Theorem 10: Uniformly in $q \leq (\log x)^{K_0}$ and $A \subset U_q$.
- (2) Distributions of the least invariant factor of multiplicative groups:
 - Writing $U_n = \mathbb{Z}/\lambda_1\mathbb{Z} \oplus \mathbb{Z}/\lambda_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/\lambda_r\mathbb{Z}$ with
 - $\lambda_1 \mid \lambda_2 \mid \cdots \mid \lambda_r$, let $\lambda_1(n) \coloneqq \lambda_1$. Estimate $\#\{n \le x : \lambda_1(n) = d\}$.
 - \circ Chang-Martin (2020): Do this for fixed d.
 - Theorem 10: Uniformly in $d \leq (\log x)^{K_0}$ with much better error terms.

35 of 35

Thank you for your attention!

Email: akash01s.roy@gmail.com