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Motivating problem: Study the distribution of arithmetic functions
among residue classes to integer moduli.

Definition 1.
Consider f : N — Z and g € N. We say f is uniformly distributed
(or equidistributed) modulo q if, for each a € Z/qZ,

%#{ngx:f(n)za (mod q)}—>%, as x — 00.

Example: f(n) = n is equidistributed mod q for every q.

Example (Pillai, Delange): Q(n) = 3, k is equidistributed mod ¢q
for each fixed g.
Note: For g = 2, this is equivalent to the (weak form of the) PNT.

But for multiplicative functions, this is NOT the correct notion to
consider. (Recall: f is multiplicative if f(mn) = f(m)f(n) for all
m, n € N such that gcd(m, n) =1.)
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Let ¢(n) denote Euler's totient; that is, ¢(n) = #(Z/nZ)*.

Fact: For a fixed g, ¢(n) =0 (mod q) for “almost all” positive
integers n:

%#{ngx: e(n)=0 (modgq)} -1 asx— oo.

This means that ¢(n) is not uniformly distributed mod g for ANY
fixed g > 1.

For multiplicative functions f : N — Z, it makes sense to study their
distribution in the multiplicative group Ug mod q. So now our sample

space is {n : gcd(f(n),q) = 1}.
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Definition 2 (Narkiewicz).

Consider f : N — Z and g € N. We say f is weakly uniformly
distributed (or weakly equidistributed or WUD) modulo g if:

1. {n:gcd(f(n),q) = 1} is an infinite set,
2. for each a € U,,

#{n<x:f(n)=a (mod q)} R 1
#{n < x:gcd(f(n),q) =1}  »(q)’

as x — 00.
Example: For which g is ¢(n) weakly equidistributed mod g?
Theorem 1 (Narkiewicz, 1967).
©(n) is weakly equidistributed modulo q iff gcd(q,6) = 1.

Consequence of general criterion for “polynomially-defined”
multiplicative functions.
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Explicit numerical distributions of ¢(n) mod 5:
For x > 1and r € {1,2,3,4} let

() = #{n<x:¢(n)=r (mod5)}
' #{n < x: ged(p(n),5) = 1}

x | pi(x) | pa(x) | p3(x) | pa(x)
10° | 0.27165 | 0.28003 | 0.23993 | 0.20837
10° | 0.27157 | 0.27556 | 0.23979 | 0.21307
107 | 0.27073 | 0.27267 | 0.23999 | 0.21660
108 | 0.26998 | 0.27051 | 0.24032 | 0.21917
10° | 0.26924 | 0.26884 | 0.24063 | 0.22127
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For x > 1and r € {1,2,3,4} let

() = #{n<x:¢(n)=r (mod5)}
' #{n < x: ged(p(n),5) = 1}

x | pi(x) | pa(x) | p3(x) | pa(x)
10° | 0.27165 | 0.28003 | 0.23993 | 0.20837
10° | 0.27157 | 0.27556 | 0.23979 | 0.21307
107 | 0.27073 | 0.27267 | 0.23999 | 0.21660
108 | 0.26998 | 0.27051 | 0.24032 | 0.21917
10° | 0.26924 | 0.26884 | 0.24063 | 0.22127

What fails mod 37 The numbers p — 1, for p # 3 prime, either fail to be
coprime to 3 or are “trapped” in the trivial subgroup of (Z/3Z)*.

(Jump back to slide 31)
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One can similarly define a family f;,--- , fx : N — Z to be jointly
weakly equidistributed or (jointly WUD) modulo g € N if:

1. {n: gcd(l_[f(:1 fi(n),q) = 1} is an infinite set,
2. for each (ai,...,ak) € U,

#{n<x: (Vi) fi(n)=a; (mod q)} . 1
#{n < x:ged([[iL, fi(n), @) =1} (@)

as X — 0Q.

Narkiewicz (1982): general criterion for deciding when a given
family f1,. .., fx of “polynomially-defined” multiplicative functions are
jointly WUD to a given modulus.

A consequence of this: Let o(n) = >2g,d, 02(n) =>4, d.

Theorem 2.
(¢, 0,02) are jointly WUD modulo any fixed q s.t. P~(q) > 23.
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In all of these results, g is fixed. What if g is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when ¢ is
allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix Ko > 0. The primes < x are
weakly equidistributed mod g, uniformly for g < (log x)*°. That is,

#p<x:p=a (modq)) .
1
AP < x}
as x — oo, uniformly in g < (log x)X° and a € Uj,.

In other words, For any given € > 0, there exists X(¢, Kp) depending
only on € and Kj s.t. the above ratio lies between 1 — € and 1+ € for
all x > X(e, Kp), all g < (log x)*® and all coprime residues a mod gq.

Question (made precise). Can we establish analogues of
Siegel-Walfisz with primes replaced by values of ¢ or (¢, 0, 02)?
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Fix Ko > 0. As x — oo,
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Merits: Our original results work for a single multiplicative function f
defined by a polynomial F at primes. Thus we are able to take the
first step towards extending Narkiewicz's results to varying moduli g.
Shortcomings of this result:

e Several arguments are restricted to a single multiplicative function and

cannot be generalized to families, so cannot uniformize Nakiewicz's
1982-criterion.
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Theorem 3 (Pollack, S. R., 2022).
Fix Ko > 0. As x — oo,

#{n<x:¢(n)=a (mod q)}
L#n<x gdlpna) =1}

uniformly for g < (log x)X° satisfying gcd(q,6) = 1 and coprime
residues a mod q.

Merits: Our original results work for a single multiplicative function f
defined by a polynomial F at primes. Thus we are able to take the
first step towards extending Narkiewicz's results to varying moduli g.

Shortcomings of this result:

e Several arguments are restricted to a single multiplicative function and
cannot be generalized to families, so cannot uniformize Nakiewicz's
1982-criterion.

e Even for a single multiplicative function, we are not able to recover a
uniform version of Narkiewicz's 1967-criterion as we need to impose
several additional restrictions on g and F.
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In recent work, these shortcomings have been addressed. The main results
of today’s talk are extensions of Narkiewicz's general criterion for families of
"polynomially-defined” multiplicative functions that are essentially optimal
in the range of g and arithmetic restrictions on q.

Consequence for (¢,0,07): @(P)=P—1,0(P)=P+1, 02(P) = P2 +1.
Theorem 4 (S. R., 2023).

Fix e € (0,1). As x — oo, we have

#{n < x:(p,0,02)(n) = (a1,a2,a3) (mod q)}
ﬁ#{n < x : ged(pooa(n),q) =1}

— 1,

uniformly in moduli g < (log x)*/?~)2(9) having P~(q) > 23 and in
coprime residue classes a; mod q, where

1 = u U2
o) = e € Ut (u =D+ D + 1) € U}

2 4
T N Gt =) B L G e
llq: £=—1 (mod 4) Llq: =1 (mod 4)
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Extending uniformity to the Siegel-Walfisz range:

Issue: (g, 0,02) are not jointly WUD uniformly to all g < (log x)*°.
Inputs n without many large prime factors obstruct uniformity!

Example: Any prime P < x s.t. P =3 (mod q) satisfies p(P) = 2,
o(P) =4, 02(P) =10 (mod q). Thus

#{n < x:(p,0,02)(n) =(2,4,10) (mod q)} > m.

The right hand side is much larger than
<p(]t-77) #{n < x : ged(poaa(n), q) = 1} if ¢ > (log x)*/2.

Work-around: Restrict to inputs n having sufficiently many large
prime factors. Equidistribution is restored among these inputs.
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Theorem 5 (S. R., 2023).
Fix Ko > 0 and € € (0,1). We have

#{n < x: Pi3(n) > q,(p,0,02)(n) = (a1,a2,a3) (mod q)}

- s0(11)3 #{n < x: P13(n) > q,gcd(po02(n), q) = 1},

as x — 0o, uniformly in q < (log x)K° satisfying P~(q) > 23 and in
coprime residues a; mod q.




Theorem 5 (S. R., 2023).
Fix Ko > 0 and € € (0,1). We have
#{n < x: P13(n) > q,(p,0,02)(n) = (a1,22,23) (mod q)}

- sO(Z)a #{n < x: P13(n) > q,gcd(po02(n), q) = 1},

as x — 0o, uniformly in q < (log x)K° satisfying P~(q) > 23 and in
coprime residues a; mod q.

For squarefree q, “13” can be replaced by ‘7".
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Some central themes behind the arguments:
1. Exploit a “mixing” phenomenon in U, (quantitative ergodicity
phenomenon for random walks in Ug).

Heuristic: Assume ged(q,6) = 1 and let
R'={u e Ug:u—1e Ug}. Choose uniformly at random
ui, ur, u3, ... from R/, and consider the products

uy — 1, (Ul — 1)(U2 — 1), (u1 — 1)(U2 — 1)(U3 — 1), e
Mixing in Uy: As J — oo, each element of U, becomes roughly
equally likely to appear as one of the products Hle(uj —1).

This mixing plays a central role for WUD of ¢(n). In the case of

(¢, 0,02), the analogous mixing phenomenon is that of the tuples
(u—1,u+1,0u>+1) in the group U], where uy, up, u3,... are chosen
from the set R = {u € Uy : (u—1)(u+1)(v® +1) € Uy}
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Detect this “mixing” using methods from the “anatomy of integers”.

2. Need more “pure analytic’ arguments: modify some powerful
methods used to estimate mean values of multiplicative functions.

3. Linear algebra over rings: use Smith normal forms to bound
certain character sums.

4. Need bounds on FFy-rational points of certain affine varieties over
Fy.
o Need to consider certain regular sequences in F[Xy,..., X,].
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Detecting the “mixing” phenomenon: Convenient n

Mixing phenomenon in unit group mod g will be detected using those
n < x that have several very large prime factors.

Several: Parameter J = J(x) € N going to infinity very very slowly.

Very large: Parameter y = y(x) s.t. past y, primes are very regularly
distributed in coprime residue classes mod g, when g < (log x)*°.

Convenient n: n < x s.t. the J largest prime factors of n are > y
and distinct. In other words, n = mP; ... P1, where

max{y, P(m)} < P; <--- < Py.

Convenient n < x give dominant contribution: After some careful
“anatomical” arguments, we can reduce proving Theorems 4 and 5 to
showing that
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Theorem 6 (Workhorse Result).

Let f = pooy. As x — 0o, we have

#{n < x conv: (p,0,02)(n) = (a1,a2,a3) (mod q)}
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Theorem 6 (Workhorse Result).

Let f = pooy. As x — 0o, we have

#{n < x conv: (p,0,02)(n) = (a1,a2,a3) (mod q)}

~ ) ——#{n < x:ged(f(n), q) = 1},

uniformly in q < (log x)¥° s.t. P=(q) > 23 and uniformly in a; € U,.

First step: Reduction to bounded divisor

Proposition 1.
In the above setting, there exists Q | g s.t. Qo = O(1) and

#{n < x conv: (p,0,02)(n) = (a1,a2,a3) (mod q)}
~ e P < (1))~ 1.
(¢,0,02)(n) = (a1,32,a3) (mod Q)}
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Any convenient n can be written as mP; ... P; where
max{y, P(m)} < P; < --- < P1. Then ¢(n) = p(m) HJJZI(PJ —1).



The first step: Reduction to bounded modulus.

Any convenient n can be written as mP; ... P; where

max{y, P(m)} < P; < --- < Pr. Then o(n) = o(m) [T_1(P; — 1).

So ¢(n) = a; (mod q) = HJJZI(PJ —1) = a1p(m)~! mod q.



The first step: Reduction to bounded modulus.

Any convenient n can be written as mP; ... P; where

max{y, P(m)} < Py < - < P1. Then p(n) = o(m) [T/_4(P; —1).
So p(n) =a; (mod q) = HJJZI(PJ —1) = a1p(m)~! mod q.

Thus
¢(n) = a1, o(n) = &, 02(n) = a3 mod q
< (P1,...,P))=(wv1,...,vy) mod g

for some (vi,...,vy) € Ug,’ satisfying:
() [T2a (v — 1) = ap(m) ™, (i) T2y (v + 1) = apo(m) 2,
(iii) [T, (v? + 1) = a302(m) ™! (mod q).

Let V, m denote the set of such (vq,...,vy).
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By J careful applications of Siegel-Walfisz,

> = X L X

n<x conv m<x Py,...
(p,0,02)(n)=(a1,a2,a3) mod g blah more blah

Fact 1: 3Qo | g s.t. Qo = O(1) and uniformly in m,
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One key ingredient: Character sum bounds (Wan, Cochrane).




By J careful applications of Siegel-Walfisz,

> = X L X

n<x conv m<x Py,...
(p,0,02)(n)=(a1,a2,a3) mod g blah more blah

Fact 1: 3Qo | g s.t. Qo = O(1) and uniformly in m,
#Vom (so(Qo))3_ ( a(q) )J #Vaym
v(q)’ ¢(q) (Q)/ #(Q)’"

One key ingredient: Character sum bounds (Wan, Cochrane).
A less standard key ingredient: Linear algebra over rings.

Note: Here, it is crucial that the three polynomials T —1, T + 1 and
T2 4 1 are “multiplicatively independent” over Z, i.e, for any integers
(c1,c,¢3) # (0,0,0), we have (T — 1) (T + 1)2(T? +1)% #
constant.
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By J careful applications of Siegel-Walfisz,

> = X L X

n<x conv m<x Py,...
(p,0,02)(n)=(a1,a2,a3) mod g blah more blah

Fact 1: 3Qo | g s.t. Qo = O(1) and uniformly in m,
#Vom (so(Qo)>3_ ( a(q) )J #Vaym
v(q)’ ¢(q) (Q)/ #(Q)’

One key ingredient: Character sum bounds (Wan, Cochrane).
A less standard key ingredient: Linear algebra over rings.

Note: Here, it is crucial that the three polynomials T —1, T + 1 and
T2 4 1 are “multiplicatively independent” over Z, i.e, for any integers
(c1,c,¢3) # (0,0,0), we have (T — 1) (T + 1)2(T? +1)% #
constant.To apply character sum bounds, it is important that
“multiplicative independence” over Z continues to prevail mod large
prime powers (interpreted suitably) .
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Combining,

> 1

n<x conv
(5070-702)(n)5(31732733) mod q

(8" () x5
blah

>

P1,....,Py
more blah



Combining,

> 1

n<x conv
(QO,U,UZ)(H)E(31732733) mod q

(@) (@) \ = #Vaom
~(%) @) Zher 5,
blah more blah

After some more technical arguments,

3
3 1 ~ (W(Q")) 3 1.
n<x conv 90((]) n<x: (f(n),q)=1
(‘1070'7‘72)(”)5(31732733) mod g (¢,0,02)(n)=(a1,a2,a3) mod Qo

This completes our initial reduction step (to bounded modulus Qp).
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The analytic argument |
We have shown: 3 Qo | g s.t. Qo = O(1), and

#{n < x conv: (p,0,02)(n) = (a1,a,a3) (mod q)}
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1 . J—
LHS ~ W#{n < x:gcd(f(n),q) =1}
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We have shown: 3 Qo | g s.t. Qo = O(1), and
#{n < x conv: (p,0,02)(n) = (a1,a,a3) (mod q)}
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Wanted to show (for Theorem 6, Workhorse Result):
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LHS ~ W#{n < x:gcd(f(n),q) =1}

Now apply orthogonality to detect congruences mod Qp.



The analytic argument |

We have shown: 3 Qo | g s.t. Qo = O(1), and

#{n < x conv: (p,0,02)(n) = (a1,a,a3) (mod q)}

(PN o ) 1 (oo o)) = (oo o) (o
N(w(q)> #{n < x:(f(n),q) = 1,(p,0.02)(n) = (a1, 32,23) (mod Q)}

Wanted to show (for Theorem 6, Workhorse Result):

1
LHS = ——+#{n < x:gcd(f(n),q) =1
oL { (f(n),q) =1}
Now apply orthogonality to detect congruences mod (. Enough to show:
Proposition 2.

For any X = (X1, X2, x3) # (X0, X0, X0) mod Qo, the sum

> Lgma=r - xa(@(m)xa(o(n))xs(o2(n))

n<x

is negligible compared to #{n < x : ged(f(n), q) = 1}.
o e —————————————————————————————————



Case 1: When

L(uqo)=1 - X1(tu — 1)x2(u + 1)x3(u® + 1) is not
constant on its support.




Case 1: When

L(uqo)=1 - X1(tu — 1)x2(u + 1)x3(u® + 1) is not
constant on its support.

Key tool:

Theorem 7 (Halasz).

Let F be a multiplicative function s.t. |F(n)| <1 for all n. For
x, T >2,

—ZF n) < l + exp ( min L Re(F(p)pit)) .

n<x




Case 1: When

L(uqo)=1 - X1(tu — 1)x2(u + 1)x3(u® + 1) is not
constant on its support.

Key tool:

Theorem 7 (Halasz).

Let F be a multiplicative function s.t. |F(n)| <1 for all n. For
x, T >2,

—ZF n) < l + exp ( min ! Re(F(p)pit)) .

n<x

Apply this to F(n) = 1(¢(n),q)=1 - X1(©(n))x2(a(n))x3(a2(n)).
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pP<x p

Cover the range of summation with “multiplicatively narrow” intervals
of the form (n,n(1 4+ o(1))]
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pP<x p

Cover the range of summation with “multiplicatively narrow” intervals
of the form (1, 7(1 + o(1))] and observe that p~/t = e~/t1°8P remains
roughly constant on each of these intervals.



Obtaining a lower bound on

> 2 (1= Re(p~xa(p — Dxalp + Dxa(p? + 1)

pP<x p

Cover the range of summation with “multiplicatively narrow” intervals
of the form (1, 7(1 + o(1))] and observe that p~/t = e~/t1°8P remains
roughly constant on each of these intervals.

Use Siegel-Walfisz to estimate the rest of the sum.



Obtaining a lower bound on

> L (1= Re(pxalp — Dxalp + Dxa(p? + 1))

pP<x p

Cover the range of summation with “multiplicatively narrow” intervals
of the form (1, 7(1 + o(1))] and observe that p~/t = e~/t1°8P remains
roughly constant on each of these intervals.

Use Siegel-Walfisz to estimate the rest of the sum.

Remark: For the resulting lower bound to be nontrivial, we need our
hypothesis that 1, gy)=1 - x1(u — 1)x2(u + 1)x3(u? + 1) is not
constant on its support.
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Case 2: When
L(u,qo)=1 - X1(u — 1)x2(u + 1)x3(u® + 1) is constant on
its support.

Recall: Want to show that

D Lenyg)=1 - xa(o(m)xa(e(n))x3(o2(n))

n<x

is negligible compared to the main term #{n < x : gcd(f(n), q) = 1}.



Case 2: When
L(u,qo)=1 - X1(u — 1)x2(u + 1)x3(u® + 1) is constant on
its support.

Recall: Want to show that

D Lenyg)=1 - xa(o(m)xa(e(n))x3(o2(n))

n<x
is negligible compared to the main term #{n < x : gcd(f(n), q) = 1}.
Key idea: Modify the Landau—Selberg—Delange (LSD) method.



Case 2: When

Ly, @o)=1 - X1(t — 1) x2(u + 1)x3(u? + 1) is constant on
its support.

Recall: Want to show that

D Lenyg)=1 - xa(o(m)xa(e(n))x3(o2(n))

n<x
is negligible compared to the main term #{n < x : gcd(f(n), q) = 1}.
Key idea: Modify the Landau—Selberg—Delange (LSD) method.

Usual LSD method (Tenenbaum): Give precise estimates for
> n<x @n if we know that 3 -, a,/n° = ((s)* for some z € C.

e o e ——————————————————————————————————————



Case 2: When
Ly, @o)=1 - X1(t — 1) x2(u + 1)x3(u? + 1) is constant on
its support.

Recall: Want to show that

D Lenyg)=1 - xa(o(m)xa(e(n))x3(o2(n))

n<x
is negligible compared to the main term #{n < x : gcd(f(n), q) = 1}.
Key idea: Modify the Landau—Selberg—Delange (LSD) method.

Usual LSD method (Tenenbaum): Give precise estimates for
> n<x @n if we know that 3 -, a,/n° = ((s)* for some z € C.

Note: Possible essential singularity at s = 1.

e o e ——————————————————————————————————————



The modification

We identify our sum

D Lemyg)=1 - xa((m)xa(e(n))x3(o2(n))

n<x

as the partial sum of the Dirichlet series

Fels) = 30 DD o)) xa(o () xa(o2(m).

n=1



The modification

We identify our sum

D Lemyg)=1 - xa((m)xa(e(n))x3(o2(n))

n<x

as the partial sum of the Dirichlet series

Fels) = 30 DD o)) xa(o () xa(o2(m).

n=1

But here
a(q)eg

e~ [ I tswy™

dlq % mod d
d sqfree 3 primitive

Here cg = 1y, qp)=1 - X1(t — 1)x2(u + 1)x3(v® + 1) # 0.
e o —————————————————————————————————————



Note: Two possible essential singularities, at s = 1 and s = fe.



Note: Two possible essential singularities, at s = 1 and s = fe.
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So we modify the usual “LSD con-
tour” into the adjacent one.




Note: Two possible essential singularities, at s = 1 and s = fe.

™~

So we modify the usual “LSD con-
tour” into the adjacent one.

Technicalities: almost entirely dif- i
ferent from usual LSD (partly in- Be 1
spired from work of Scourfield).
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So we modify the usual “"LSD con-
tour” into the adjacent one.

Technicalities: almost entirely dif-
ferent from usual LSD (partly in-
spired from work of Scourfield).

After a lot of technical work, we de-
duce that if P~(q) > 23, then

> Lisma-rxale(m)xa(o(n)xs(o2(n))

n<x

is negligible compared to the main
term #{n < x : gcd(f(n), q) = 1}.

This completes the proof of our
Workhorse result Theorem 6, and
hence also of Theorems 4 and 5.
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(Some of) the General Main Results

Consider multiplicative functions fi, ..., fx : N — Z and polynomials
{Wiy}i<ick CZ[T], such that fi(p") = W, (p).
1<v<V
W1’1 W172 el e W17\/
Wg’l W272 el e W27V
WK71 WK72 e e WK,V KxV
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(Some of) the General Main Results

Consider multiplicative functions fi, ..., fx : N — Z and polynomials
{V\ﬁ,v}lgigK C Z[T], such that f,'(pv) = VV,-7V(p .

1<v<V
W1’1 W172 e e WLV
Wg’l W272 e e WQ’\/
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Note: For ¢, 0,02, only the first column of the matrix mattered, as
{lueUy:u—Lu+1Lu’+1e Uy} #0.
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(Some of) the General Main Results

Consider multiplicative functions fi, ..., fx : N — Z and polynomials
{Wi}i<ick C Z[T], such that fi(p") = W, . (p).
12v<V
W1’1 W172 el e WLV
Wg’l W272 el e WQ’\/
WK71 WK72 e e WK,V KxV

Note: For ¢, 0,02, only the first column of the matrix mattered, as
{lueUy:u—Lu+1Lu’+1e Uy} #0.

In general this may not happen!

Given k € {1,..., V}, we say that q is k-admissible if

{ue Uy : (Vi) Wii(u) € Ug} # 0, but

{ue Uy: (Vi) Wi (u) € Uy} =0, foreach 1 <v < k—1.
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Notation: For a fixed k € {1,..., V}, define

O(k;f,--,fk) ={q: qis k-admissible, f1,. .., fx are jointly WUD mod g}.

Narkiewicz (1982): Complete description of Q(k; f1,- - , fk).



Notation: For a fixed k € {1,..., V}, define

O(k;f,--,fk) ={q: qis k-admissible, f1,. .., fx are jointly WUD mod g}.

Narkiewicz (1982): Complete description of Q(k; f1,- - , fk).

We give uniform analogues of Narkiewicz's result, which are best
possible in the range and arithmetic restrictions on q. We just need
two technical hypotheses H; and H», which we can prove to be
necessary.



Let ax(q) = ﬁ#{u € Uy : TIE, Wik(u) € Uy} and
Dmin = mini<j<k deg(W k).

Theorem 8 (S.R., 2023).

Fix Ko > 0 and € € (0,1). Under Hy and H,, the functions fi,. .., fx

are jointly WUD, uniformly modulo q € Q(k; f1,--- , fk), provided

any one of the following holds.

_ (log x)Ko, if K =1 and W, x is linear.

(i) a= (1-0)a(a)(K~1/Dyie) : '
(log x)\ 1~ min) " otherwise.

(ii) q is squarefree and X~ 1D%) < (log x)(1~)(a),



Let ax(q) = ﬁ#{u € Uy : TIE, Wik(u) € Uy} and
Dmin = mini<j<k deg(W k).

Theorem 8 (S.R., 2023).

Fix Ko > 0 and € € (0,1). Under Hy and H,, the functions fi,. .., fx

are jointly WUD, uniformly modulo q € Q(k; f1,--- , fk), provided

any one of the following holds.

_ (log x)Ko, if K =1 and W, x is linear.

(i) a= (1-0)a(a)(K~1/Dyie) : '
(log x)\ 1~ min) " otherwise.

(ii) q is squarefree and X~ 1D%) < (log x)(1~)(a),

Optimality: This result is essentially optimal in the arithmetic
restrictions on g as well as in the hypotheses H; and H». Also, second
case of (i) and (ii) are optimal in the range of g.
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As for ¢, 0,02, we need to restrict our input sets to get complete uniformity
up to arbitrary powers of log x. Fix Ko > 0.

Theorem 9 (S.R., 2023).
Fix Ko > 0. Under Hy and H,, we have

#{n < x:Pg(n) >q, (Vi)fi(n)=a (modgq)}

~ ﬁ# {n < x: Pr(n) > gq, ng(H fin), q) = 1} ’

i=1

uniformly in q < (log x)*° lying in Q(k; fi,--- ,fx) and in ay,...,ax € U,. Here
1. R=max{k(KD+1),k(1+ (k+1)(K —1/D))} for general q.
2. If q is squarefree and k > 2, then

R [K(Kk+K—k)+1, if one of {W; «}<1 not sqfull.
k(Kk + K —k+1)+1, in general.

3. If q is squarefree and k =1, then R = 2K + 1.
Further, if k = K =1 and WA i is not squarefull, then R = 2.
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As for ¢, 0,02, we need to restrict our input sets to get complete uniformity
up to arbitrary powers of log x. Fix Ko > 0.

Theorem 9 (S.R., 2023).
Fix Ko > 0. Under Hy and H,, we have

#{n < x:Pg(n) >q, (Vi)fi(n)=a (modgq)}

~ ﬁ# {n < x: Pr(n) > gq, ng(H fin), q) = 1} ’

i=1

uniformly in q < (log x)*° lying in Q(k; fi,--- ,fx) and in ay,...,ax € U,. Here
1. R=max{k(KD+1),k(1+ (k+1)(K —1/D))} for general q.
2. If q is squarefree and k > 2, then

R [K(Kk+K—k)+1, if one of {W; «}<1 not sqfull.
k(Kk + K —k+1)+1, in general.

3. If q is squarefree and k =1, then R = 2K + 1.
Further, if k = K =1 and WA i is not squarefull, then R = 2.

Optimality: Most of these R's are either exactly or nearly optimal, ensuring
joint WUD among as large a set of inputs as possible.
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Ongoing work: Finer distribution questions and an
extension of the Landau-Selberg—Delange method

Question: Can we say anything about the deviation of
#{n < x: (Vi) fi(n) = a; (mod q)} from its expected value

@(q)K#{n < x, (Vi) ged(fi(n),q) = 1}, uniformly for g < (log x)K0?
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Ongoing work: Finer distribution questions and an
extension of the Landau-Selberg—Delange method

Question: Can we say anything about the deviation of
#{n < x: (Vi) fi(n) = a; (mod q)} from its expected value
W#{n < x, (Vi) ged(fi(n), q) = 1}, uniformly for g < (log x)*0?

Rate of convergence? Second—order behavior?
Previous methods: say nothing (worthwhile)!

To say something interesting, we will need precise asymptotics for the
sums >, x1(fi(n))... xk(fk(n)) in the full range g < (log x)Ko.
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General question (extension of LSD): Assuming that
Yons13n/0° X [ mod g L(sk, X)X, give precise asymptotic series
estimating > ., ap uniformly in g in a wide range.



General question (extension of LSD): Assuming that

Yons13n/0° X [ mod g L(sk, X)X, give precise asymptotic series
estimating > ., ap uniformly in g in a wide range.

Theorem 10 (S.R. 2024, in preparation).

Fix Ko > 0. In the above setting and under some natural additional
hypotheses, we have

> an=

n<x

Lk
(Iogx)1 “x Z (Iogx)J

+ O(error term),

uniformly in x >3, N > 0 and q < (log x)X0. The error term is
genuinely smaller than the main term in the full range q < (log x)X°
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Concrete and potential applications (ongoing work):

1. Estimate #{n < x : gcd(f(n), q) = 1} for large classes of
multiplicative functions f.

e Rankin, Serre, Spearman—Williams, Narkiewicz, Ford—Luca—Moree,
etc.: specific examples of interesting f and fixed gq.



Concrete and potential applications (ongoing work):

1. Estimate #{n < x : gcd(f(n), q) = 1} for large classes of
multiplicative functions f.

e Rankin, Serre, Spearman—Williams, Narkiewicz, Ford—Luca—Moree,
etc.: specific examples of interesting f and fixed gq.

» Scourfield: varying g and f well-controlled on primes,



Concrete and potential applications (ongoing work):

1. Estimate #{n < x : gcd(f(n), q) = 1} for large classes of
multiplicative functions f.

e Rankin, Serre, Spearman—Williams, Narkiewicz, Ford—Luca—Moree,
etc.: specific examples of interesting f and fixed gq.

» Scourfield: varying g and f well-controlled on primes,

e Theorem 10: precise estimates for larger classes of f, uniformly in
q < (logx)®.

e Extra generality with “k" allows us to consider more interesting

varieties of f and g, for which behavior of f at higher prime powers
becomes crucial. (Eg.: o(n) for 2 | g: Behavior at p? matters.)
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Concrete and potential applications (ongoing work,

contd.):

2. Applications in non—equidistribution settings:
(1) Positive integers with prime divisors restricted to residue classes:
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2. Applications in non—equidistribution settings:
(1) Positive integers with prime divisors restricted to residue classes:
Given g € N and A C Uy, estimate
#{n<x: p|n = pmodgqe A}
o Landau (1908): Does this for fixed g and A.
o Theorem 10: Uniformly in g < (log x)*0 and A C U,.

(2) Distributions of the least invariant factor of multiplicative groups:

Writing Up = Z/MZ & Z/ AL & - -- & L/ Z with
A1 A2 |-+ Ar, let Ai(n) == A1. Estimate #{n < x : A\1(n) = d}.

o Chang—Martin (2020): Do this for fixed d.
o Theorem 10: Uniformly in d < (log x)Ko with much better error terms.
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