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Motivating problem: Study the distribution of arithmetic functions
among residue classes to integer moduli.

Definition 1.
Let f be an integer-valued arithmetic function and q be a positive
integer. We say f is uniformly distributed (or equidistributed)
modulo q if, for each integer a,

1

x
#{n ≤ x : f (n) ≡ a (mod q)} → 1

q
, as x → ∞.

Example: f (n) = n is equidistributed mod q for every q.

Example (Pillai, Delange): Ω(n) =
∑

pk∥n k is equidistributed mod q
for each fixed q.

But for multiplicative functions, this is NOT the correct notion to
consider. (Recall: f is multiplicative if f (mn) = f (m)f (n) for all
m, n ∈ Z+ such that gcd(m, n) = 1.)
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Let φ(n) denote Euler’s totient; that is, φ(n) = #(Z/nZ)×.

Fact: For a fixed q, φ(n) ≡ 0 (mod q) for “almost all” positive
integers n:

1

x
#{n ≤ x : φ(n) ≡ 0 (mod q)} → 1 as x → ∞.

This means that φ(n) is not uniformly distributed mod q for ANY
fixed q > 1.

For multiplicative functions f : N → Z, it makes sense to study their
distribution in the multiplicative group Uq mod q. So now our sample
space is {n : gcd(f (n), q) = 1}.
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Definition 2 (Narkiewicz).

Let f be an integer-valued arithmetic function and q be a positive
integer. We say f is weakly uniformly distributed (or weakly
equidistributed or WUD) modulo q if:

1. {n : gcd(f (n), q) = 1} is an infinite set,

2. for each a ∈ Uq,

#{n ≤ x : f (n) ≡ a (mod q)}
1

φ(q)#{n ≤ x : gcd(f (n), q) = 1}
→ 1,

as x → ∞.

Example: For which q is φ(n) weakly equidistributed mod q?

Theorem 1 (Narkiewicz, 1967).

φ(n) is weakly equidistributed modulo q iff gcd(q, 6) = 1.

Consequence of general criterion for “polynomially-defined”
multiplicative functions.
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One can similarly define a family f1, · · · , fK of arithmetic functions to
be jointly weakly equidistributed or (jointly WUD) modulo q if:

1. {n : gcd(
∏K

i=1 fi (n), q) = 1} is an infinite set,

2. for each (a1, . . . , aK ) ∈ UK
q ,

#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)}
1

φ(q)K
#{n ≤ x : gcd(

∏K
i=1 fi (n), q) = 1}

→ 1,

as x → ∞.

Narkiewicz has a general criterion for deciding when a given family
f1, . . . , fK of “polynomially-defined” multiplicative functions are
jointly WUD to a given modulus.

A consequence of this: Let σ(n) =
∑

d |n d , σ2(n) =
∑

d |n d
2.

Theorem 2.
(φ, σ, σ2) are jointly WUD modulo any fixed q s.t. P−(q) > 23.
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In all of these results, q is fixed. What if q is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when q is
allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix K0 > 0. The primes ≤ x are
weakly equidistributed mod q, uniformly for q ≤ (log x)K0 . That is,

#{p ≤ x : p ≡ a (mod q)}
1

φ(q)#{p ≤ x}
→ 1

as x → ∞, uniformly in q ≤ (log x)K0 and a ∈ Uq.

In other words, For any given ϵ > 0, there exists X (ϵ,K0) depending
only on ϵ and K0 s.t. the above ratio lies between 1− ϵ and 1+ ϵ for
all x > X (ϵ), all q ≤ (log x)K0 and all coprime residues a mod q.

Question (made precise). Can we establish analogues of
Siegel-Walfisz with primes replaced by values of φ or (φ, σ, σ2)?
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Theorem 3 (Pollack, S. R., 2022).

Fix K0 > 0. As x → ∞,

#{n ≤ x : φ(n) ≡ a (mod q)}
1

φ(q)#{n ≤ x : gcd(φ(n), q) = 1}
→ 1,

uniformly for q ≤ (log x)K0 satisfying gcd(q, 6) = 1 and coprime
residues a mod q.

Merits: Our original results work for a single multiplicative function f

defined by a polynomial F at primes. Thus we are able to take the
first step towards extending Narkiewicz’s results to varying moduli q.

Shortcomings of this result:
• Several arguments are restricted to a single multiplicative function and

cannot be generalized to families.
• Even for a single multiplicative function, we are not able to recover a

uniform version of Narkiewicz’s general criterion as we need to impose
several additional restrictions on q and F .
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In recent work, these shortcomings have been addressed. The main results
of today’s talk are extensions of Narkiewicz’s general criterion for families of
“polynomially-defined” multiplicative functions that are optimal in the range
and arithmetic restrictions of q as well as all almost all other hypotheses.

Theorem 4 (S. R., 2023).
Fix ϵ ∈ (0, 1). As x → ∞, we have

#{n ≤ x : φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}
1

φ(q)3#{n ≤ x : gcd(φσσ2(n), q) = 1}
→ 1,

uniformly in moduli q ≤ (log x)(1/2−ϵ)α(q) having P−(q) > 23 and in
coprime residue classes ai mod q, where

α(q) =
1

φ(q)
#{u ∈ Uq : (u − 1)(u + 1)(u2 + u + 1) ∈ Uq}

=
∏

ℓ|q: ℓ̸≡1 (mod 3)

(
1− 2

ℓ− 1

)
·

∏
ℓ|q: ℓ≡1 (mod 3)

(
1− 4

ℓ− 1

)
.

Remark: φ(P) = P − 1, σ(P) = P + 1, σ2(P) = P2 + P + 1.
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Issue: (φ, σ, σ2) are not jointly WUD uniformly to all q ≤ (log x)K0 .
Inputs n without many large prime factors obstruct uniformity!

Example: Any prime P ≤ x s.t. P ≡ 3 (mod q) satisfies φ(P) ≡ 2,
σ(P) ≡ 4, σ2(P) ≡ 13 (mod q). Thus

#{n ≤ x : (φ(n), σ(n), σ2(n)) ≡ (2, 4, 13) (mod q)} ≫ x

φ(q) log x
.

The right hand side is much larger than
1

φ(q)3
#{n ≤ x : gcd(φσσ2(n), q) = 1} if q ≫ (log x)1/2.

Work-around: Restrict to inputs n having sufficiently many large
prime factors. Equidistribution is restored among these inputs.
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Theorem 5 (S. R., 2023).

Fix K0 > 0 and ϵ ∈ (0, 1). We have

#{n ≤ x : P13(n) > q, φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}

∼ 1

φ(q)3
#{n ≤ x : P13(n) > q, gcd(φσσ2(n), q) = 1},

as x → ∞, uniformly in q ≤ (log x)K0 satisfying P−(q) > 23 and in
coprime residues ai mod q.

For squarefree q, “13” can be replaced by “7”.
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Some central themes behind the arguments:
1. Exploit a “mixing” phenomenon in Uq (quantitative ergodicity
phenomenon for random walks in Uq).

Heuristic: Assume gcd(q, 6) = 1 and let
R′ = {u ∈ Uq : u − 1 ∈ Uq}. Choose uniformly at random
u1, u2, u3, . . . from R′, and consider the products

u1 − 1, (u1 − 1)(u2 − 1), (u1 − 1)(u2 − 1)(u3 − 1), . . .

As J → ∞, each element of Uq becomes roughly equally likely to

appear as one of the products
∏J

j=1(uj − 1).

This mixing plays a central role for WUD of φ(n). In our case, the
analogous mixing phenomenon is that of the tuples
(u − 1, u + 1, u2 + u + 1) in the group U3

q , where u1, u2, u3, . . . are
chosen from the set R = {u ∈ Uq : (u− 1)(u+1)(u2 + u+1) ∈ Uq}.
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Detect this “mixing” using methods from the “anatomy of integers”.

2. Need more “pure analytic” arguments: modify some powerful
methods used to estimate mean values of multiplicative functions.

3. Linear algebra over rings: mainly to bound certain character sums.

4. Need bounds on Fℓ-rational points of certain affine varieties over
Fℓ.
• Need to consider certain regular sequences in Fℓ[X1, . . . ,Xr ].
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A crude estimate for the main term:

Let f = φσσ2.

Recall that

α(q) =
1

φ(q)
#{u ∈ Uq : (u − 1)(u + 1)(u2 + u + 1) ∈ Uq}.

Proposition 1.

Uniformly in q ≤ (log x)K0 s.t. P−(q) > 7, we have,

#{n ≤ x : gcd(f (n), q) = 1} ≍ x

(log x)1−α(q)
· (negligible factors)

13 of 41



The major contributors: Convenient n

Let J = J(x) be an integer going to infinity very slowly, say

J = ⌊log log log x⌋.

Let
y = exp((log x)ϵ/2)

(ϵ as in statement of Thm 4, ϵ = 1 for Thm 5).
Note q ≪ y ≪ x1/1000.

Convenient n: The largest J prime factors of n are > y and distinct.
In other words, n = mPJ . . .P1, where
max{y ,P(m)} < PJ < · · · < P1.

Reason y? Past y , primes are very regularly distributed in coprime
residue classes mod q, when q ≤ (log x)K0 .
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Convenient n give dominant contribution.

Theorem 6 (Workhorse Result).
As x → ∞, we have

#{n ≤ x conv : φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}

∼ 1

φ(q)3
#{n ≤ x : gcd(f (n), q) = 1},

uniformly in q ≤ (log x)K0 s.t. P−(q) > 23 and uniformly in ai ∈ Uq.

First step: Reduction to bounded divisor

Proposition 2.
In the above setting, there exists Q0 | q s.t. Q0 = O(1) and

#{n ≤ x conv : φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}

≈ 1

φ(q)3
· φ(Q0)

3#{n ≤ x : (f (n), q) = 1, φ(n) ≡ a1, σ(n) ≡ a2,

σ2(n) ≡ a3 (mod Q0)}
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The first step: Reduction to bounded modulus.

Any convenient n can be written as mPJ . . .P1 where
max{y ,P(m)} < PJ < · · · < P1. Then φ(n) = φ(m)

∏J
j=1(Pj − 1).

So φ(n) ≡ a1 (mod q) =⇒
∏J

j=1(Pj − 1) ≡ a1φ(m)−1 mod q.

Thus

φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 mod q

⇐⇒ (P1, . . . ,PJ) mod q ∈ Vq,m

where Vq,m denotes the set of such (v1, . . . , vJ) ∈ UJ
q that satisfy:

(i)
∏J

j=1(vj − 1) ≡ a1φ(m)−1,

(ii)
∏J

j=1(vj + 1) ≡ a2σ(m)−1,

(iii)
∏J

j=1(v
2
j + vj + 1) ≡ a3σ2(m)−1 (mod q).
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Thus ∑
n≤x conv

φ(n)≡a1, σ(n)≡a2
σ2(n)≡a3 (mod q)

1 =
∑
m≤x
blah

∑
P1,...,PJ
more blah

(P1,...,PJ) mod q∈Vq,m

1.

By J careful applications of Siegel–Walfisz,∑
n≤x conv

φ(n)≡a1, σ(n)≡a2
σ2(n)≡a3 (mod q)

1 ≈
∑
m≤x
blah

#Vq,m

φ(q)J

∑
P1,...,PJ
more blah

1

Fact 1: ∃Q0 | q s.t. Q0 = O(1) and

#Vq,m

φ(q)J
≈

(
φ(Q0)

φ(q)

)3

·
(
α(q)

α(Q0)

)J #VQ0,m

φ(Q0)J
.
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Combining,∑
n≤x conv

φ(n)≡a1, σ(n)≡a2
σ2(n)≡a3 (mod q)

1

≈
(
φ(Q0)

φ(q)

)3
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(
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α(Q0)

)J ∑
m≤x
blah

#VQ0,m

φ(Q0)J

∑
P1,...,PJ
more blah

1.

After some more technical arguments, we get our initial reduction
step:

∑
n≤x conv

φ(n)≡a1, σ(n)≡a2
σ2(n)≡a3 (mod q)

1 ≈
(
φ(Q0)

φ(q)

)3 ∑
n≤x : (f (n),q)=1
φ(n)≡a1, σ(n)≡a2
σ2(n)≡a3 (mod Q0)

1.
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More on Fact 1

Given N ≥ 1 and w = (wi )
3
i=1 ∈ U3

q , let

VN(q,w) = {(v1, . . . , vN) ∈ UN
q :

N∏
j=1

(vj − 1) ≡ w1,

N∏
j=1

(vj + 1) ≡ w2,

N∏
j=1

(v 2
j + vj + 1) ≡ w3 (mod q)},

so that Vq,m = VJ(q, (a1φ(m)−1, a2σ(m)−1, a3σ2(m)−1)).

Fact 1 (Generalized): Consider q having P−(q) > 23. Then ∃Q0|q, s.t.
Q0 = O(1), and s.t. for w = (wi )

3
i=1 ∈ U3

q and N ≥ 13,

#VN(q,w)

(α(q)φ(q))N
≈

(
φ(Q0)

φ(q)

)3

· #VN(Q0,w)

(α(Q0)φ(Q0))N
.

Recall α(q) = 1
φ(q)

#{u ∈ Uq : (u − 1)(u + 1)(u2 + u + 1) ∈ Uq}.
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· #VN(Q0,w)

(α(Q0)φ(Q0))N
.

Recall α(q) = 1
φ(q)

#{u ∈ Uq : (u − 1)(u + 1)(u2 + u + 1) ∈ Uq}.
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Instead of VN(q,w), we consider, for ℓe ∥ q,

VN(ℓ
e ,w) = {(v1, . . . , vN) ∈ UN

ℓe :
N∏
j=1

(vj − 1) ≡ w1,

N∏
j=1

(vj + 1) ≡ w2,
N∏
j=1

(v 2
j + vj + 1) ≡ w3 (mod ℓe)},

By the orthogonality of Dirichlet characters,

#VN(ℓ
e ,w) =

1

φ(ℓe)3

∑
χ1,χ2,χ3 mod ℓe

χ1(w1)χ2(w2)χ3(w3)(Zℓe ,χ̂)
N :

Zℓe ,χ̂ =
∑

v∈Uℓe
χ1(v − 1)χ2(v + 1)χ3(v

2 + v + 1) for χ̂ = (χ1, χ2, χ3) mod ℓe .

Character sum machinery allows us to show that the contribution of
all the tuples Zℓe ,χ̂ is negligible, for χ̂ ̸= (χ0, χ0, χ0) mod ℓe .
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Note: Here, it is crucial that the three polynomials T − 1, T + 1 and
T 2 + T + 1 are “multiplicatively independent” over Q, i.e, for any
(c1, c2, c3) ̸= (0, 0, 0), we have
(T − 1)c1(T + 1)c2(T 2 + T + 1)c3 ̸= constant.

To apply our character
sum bounds, it is important that the multiplicative independence
condition over Q continues to prevail mod powers of large primes.

We get uniformly in N ≥ 13 and in ℓe ∥ q for suff large ℓ,

#VN(ℓ
e ,w)

(α(ℓe)φ(ℓe))N
≈ 1

φ(ℓe)3

We can deal with the small primes dividing q with a more
complicated version of this argument. The “ #VN(Q0,w)

(α(Q0)φ(Q0))N
” term

comes from these small primes.

This gives Fact 1, and completes the reduction to a bounded divisor.
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The analytic argument I

Thus: ∃ Q0 | q s.t. Q0 = O(1), and

#{n ≤ x conv : φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}

≈
(
φ(Q0)

φ(q)

)3

#{n ≤ x : (f (n), q) = 1, φ(n) ≡ a1, σ(n) ≡ a2,

σ2(n) ≡ a3 (mod Q0)}

Wanted to show (for Theorem 6, Workhorse Result):

LHS ≈ 1

φ(q)3
#{n ≤ x : gcd(f (n), q) = 1}

Now apply orthogonality on the right hand side! Enough to show:

Proposition 3.
∃δ0 > 0 s.t. for any χ̂ = (χ1, χ2, χ3) ̸= (χ0, χ0, χ0) mod Q0,∑

n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n)) ≪
x

(log x)1−(1−δ0)α(q)
.
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We first show this in the case when the product
1(u,Q0)=1 · χ1(u − 1)χ2(u + 1)χ3(u

2 + u + 1) is not constant on its
support.

Key tool:

Theorem 7 (Halász).

Let F be a multiplicative function s.t. |F (n)| ≤ 1 for all n. For
x ,T ≥ 2,

1

x

∑
n≤x

F (n) ≪ exp

− min
|t|≤T

∑
p≤x

1− Re(F (p)p−it)

p

 ,

up to other negligible terms.

For this bound to be useful, we need to lower bound the sums∑∗

p≤x

1

p
·
(
1− Re(p−itχ1(p − 1)χ2(p + 1)χ3(p

2 + p + 1))
)
.
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Obtaining a lower bound on∑∗

p≤x

1

p
·
(
1− Re(p−itχ1(p − 1)χ2(p + 1)χ3(p

2 + p + 1))
)
.

Cover the range of summation with “multiplicatively narrow” intervals
of the form (η, η(1 + o(1))] and observe that p−it = e−it log p remains
roughly constant on each of these intervals.

Use Siegel–Walfisz to estimate the rest of the sum.

Remark: For the resulting lower bound to be nontrivial, we need our
hypothesis that 1(u,Q0)=1 · χ1(u − 1)χ2(u + 1)χ3(u

2 + u + 1) is not
constant on its support.
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The analytic argument II

Want to show: ∃δ0 > 0 s.t. for any χ̂ = (χ1, χ2, χ3) ̸= (χ0, χ0, χ0)
mod Q0 for which 1(u,Q0)=1 · χ1(u − 1)χ2(u + 1)χ3(u

2 + u + 1) is
constant on its support, we have∑
n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n)) ≪
x

(log x)1−(1−δ0)α(q)
.

Key idea: We modify the Landau–Selberg–Delange (LSD) method.
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The standard LSD method (Tenenbaum):

Given: Dirichlet series

∞∑
n=1

an
ns

= ζ(s)z · H(s)

where z ∈ C and H(s) is very well-behaved.

Objective: Give precise estimates for
∑

n≤x an.

Note: Possible essential singularity at s = 1.
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1. Perron’s formula: Write∑
n≤x an in terms of a complex in-

tegral involving
∑∞

n=1 an/n
s , over a

truncated vertical line to the right
of 1.
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1. Write
∑

n≤x an in terms
of a complex integral involving∑∞

n=1 an/n
s , over a truncated ver-

tical line to the right of 1.

2. Shift contours slightly to the left
using a contour like the one shown.
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1. Perron’s formula: Write∑
n≤x an in terms of a complex in-

tegral involving
∑∞

n=1 an/n
s , over a

truncated vertical line to the right
of 1.

2. Shift contours slightly to the left
using a contour like the one shown.

3. Main term arises from keyhole.
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1. Perron’s formula: Write∑
n≤x an in terms of a complex in-

tegral over a truncated vertical line
to the right of 1.

2. Shift contours slightly to the left
using a contour like the one shown.

3. Main term arises from keyhole.
Rest of integral can be bounded via
standard properties of ζ(s).
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The modification

We identify our sum∑
n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n))

as the partial sum of the Dirichlet series

Fχ̂(s) =
∞∑
n=1

1(f (n),q)=1

ns
· χ1(φ(n))χ2(σ(n))χ3(σ2(n)).

But here

Fχ̂(s) =

 ∏
d|q

d sqfree

∏
ψ mod d
ψ primitive

L(s, ψ)γ(ψ)


α(q)cχ̂

· G (s)

for some well behaved G (s). Here
cχ̂ = 1(u,Q0)=1 · χ1(u − 1)χ2(u + 1)χ3(u

2 + u + 1) ̸= 0.
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Note: Two possible essential singularities, at s = 1 and s = βe .

So the contour we choose is the one
adjacent.
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Note: Two possible essential singularities, at s = 1 and s = βe .

So the contour we choose is the one
adjacent.

Main term: from the part Γ̃ corre-
sponding to the two red segments
above and below the branch cut.
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So the contour we choose is the one
adjacent.

Main term: comes from the part
Γ̃ of Γ corresponding to the two
red segments above and below the
branch cut.

Error terms: Contribution of rest
of contour is bounded very differ-
ently from the usual LSD (inspira-
tion from Scourfield).
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After a lot of technical work, we get∑
n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n)) ≪
x

(log x)1−α(q)(cχ̂+δ)
.

To get the desired bound on the partial sum, we need (say)
Re(cχ̂) ≤ 1− 2δ. This last piece comes from the condition P−(q) > 23.

Thus we get for all χ̂ = (χ1, χ2, χ3) ̸= (χ0, χ0, χ0) mod Q0,∑
n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n)) ≪
x

(log x)1−(1−δ0)α(q)
.

Finally, we obtain the Workhorse Result:

#{n ≤ x conv : φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}

∼ 1

φ(q)3
#{n ≤ x : gcd(f (n), q) = 1}. (1)
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Obtaining Theorems 4 and 5 for (φ, σ, σ2):

Recall the statements of Theorems 4 and 5:
1. Uniformly in moduli q ≤ (log x)(1/2−ϵ)α(q) s.t. P−(q) > 23,

#{n ≤ x : φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}

∼ 1

φ(q)3
#{n ≤ x : gcd(φσσ2(n), q) = 1}.

2.Unif in q ≤ (log x)K0 satisfying P−(q) > 23, we have

#{n ≤ x : PR(n) > q, φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 (mod q)}

∼ 1

φ(q)3
#{n ≤ x : PR(n) > q, gcd(φσσ2(n), q) = 1},

where R = 13 in general, and R = 7 for squarefree q.

By (1), remains to show that the contribution of inconvenient n is negligible.
Need careful arguments studying the anatomy of inconvenient inputs n.
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(Some of) the General Main Results

Consider multiplicative functions f1, . . . , fK : N → Z and polynomials
{Wi,v}1≤i≤K

1≤v≤V
⊂ Z[T ], such that fi (p

v ) = Wi,v (p).

W1,1 W1,2 . . . . . . W1,V
W2,1 W2,2 . . . . . . W2,V
. . . . . . . . . . . . . . .

WK ,1 WK ,2 . . . . . . WK ,V


K×V

Note: For φ, σ, σ2, only the first column of the matrix mattered, as
α(q) = φ(q)−1#{u ∈ Uq : u(u − 1)(u + 1)(u2 + u + 1) ∈ Uq} ≠ 0. In
general this may not happen!

Given k ∈ {1, . . . ,V }, we say that q is k-admissible if
{u ∈ Uq : (∀i) Wi ,k(u) ∈ Uq} ≠ ∅, but
{u ∈ Uq : (∀i) Wi ,v (u) ∈ Uq} = ∅, for each 1 ≤ v ≤ k − 1.
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Convention: In the rest of the talk, we assume that q is k-admissible
for a fixed k .

(Recall: fi (p
k) = Wi ,k(p) and (Wi ,k)

K
i=1 was the k-th column of

polynomials.)

Theorem 8 (Narkiewicz, 1982).

Fix a k-admissible integer q. The functions
f1, . . . , fK are jointly WUD mod q iff q satisfies Property N:

For every tuple χ̂ = (χ1, . . . , χK ) ̸= (χ0, . . . , χ0) mod q s.t.
χ0(u)

∏K
i=1 χi (Wi ,k(u)) = 1 on its support, a certain “local factor”

associated to χ̂ vanishes.

Let Q(k ; f1, · · · , fK ) be the set of k-admissible q satisfying Property
N.
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To give uniform analogues of Narkiewicz’s results we’ll need two
technical hypotheses H1 and H2, which we can prove to be necessary.

Let αk(q) =
1

φ(q)#{u ∈ Uq :
∏K

i=1Wi ,k(u) ∈ Uq} and

Dmin = min1≤i≤K deg(Wi ,k).

Theorem 9 (S.R., 2023).

Fix ϵ ∈ (0, 1). Under H1 and H2, the functions f1, . . . , fK are jointly
WUD, uniformly modulo q ∈ Q(k ; f1, · · · , fK ), provided any one of
the following holds.

(i) Either K = 1 and W1,k = Wk is linear, or K ≥ 2,
q ≤ (log x)(1−ϵ)αk (q)/(K−1) and at least one of {Wi ,k}Ki=1 is linear.

(ii) Dmin > 1 and q ≤ (log x)(1−ϵ)αk (q)(K−1/Dmin)
−1
.

(iii) q is squarefree and qK−1D
ω(q)
min ≤ (log x)(1−ϵ)αk (q).

Optimality: This result is essentially optimal in the range and
arithmetic restrictions on q as well as in the hypotheses H1 and H2.
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As for φ, σ, σ2, we need to restrict our input sets to get complete uniformity
up to arbitrary powers of log x. Fix K0 > 1.

Theorem 10 (S.R., 2023).
Under H1 and H2, we have, uniformly in q ≤ (log x)K0 lying in Q(k; f1, · · · , fK ) and
in a1, . . . , aK ∈ Uq,

#{n ≤ x : PR(n) > q, (∀i) fi (n) ≡ ai (mod q)}

∼ 1

φ(q)K
#

{
n ≤ x : PR(n) > q, gcd(

K∏
i=1

fi (n), q) = 1

}
.

1. R = max {k(KD + 1), k (1 + (k + 1) (K − 1/D))} for general q.

2. If q is squarefree and k ≥ 2, then

R =

{
k(Kk + K − k) + 1, if one of {Wi,k}Ki=1 not sqfull.
k(Kk + K − k + 1) + 1, in general.

3. If q is squarefree and k = 1, then R = 2K + 1.
Further, if k = K = 1 and W1,k is not squarefull, then R = 2.

Optimality: Most of these R’s are either exactly or nearly optimal, ensuring
joint WUD among as large a set of inputs as possible.
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Thank you for your attention!
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