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Abstract. We provide a uniform bound on the partial sums of multiplicative functions under
very general hypotheses. As an application, we give a nearly optimal estimate for the count
of n ≤ x for which the Alladi-Erdős function A(n) =

∑
pk∥n kp takes values in a given residue

class modulo q, where q varies uniformly up to a fixed power of log x. We establish a similar
result for the equidistribution of the Euler totient function φ(n) among the coprime residues
to the “correct” moduli q that vary uniformly in a similar range, and also quantify the failure
of equidistribution of the values of φ(n) among the coprime residue classes to the “incorrect”
moduli.

1. Introduction

The subject of mean values of multiplicative functions has received a lot of attention in the
field of analytic number theory. The aim is to provide estimates for the partial sums of
multiplicative functions that are as precise and as general as possible. In general settings, a
satisfactory bound is often provided by the classical result of Halász [9], made quantitatively
precise in work of Montgomery and Tenenbaum (see Corollary 4.12 on p. 494 of [24] for the
precise statement); several useful variants of this result may also be found in [10], [11] and [24].
In the direction of precision, one of the most powerful estimates is provided by the method
of Landau–Selberg–Delange, a comprehensive account of which may be found in [24, Chapter
II.5]. However, while the estimate of Halász is not precise enough in certain occasions, an
application of the Landau–Selberg–Delange method often severely limits uniformity in some
desired parameters. One of our primary objectives in this manuscript is to bridge this gap
between precision and generality, so as to obtain a bound that captures the savings missed by
Halász’s Theorem in applications, whilst permitting applicability in a wide variety of settings.
In order to demonstrate the flexibility of both our result and our methods, we will obtain
precise estimates on the value distributions of the Alladi-Erdős function A(n) :=

∑
pk∥n kp and

the Euler totient function φ(n) := #{1 ≤ d ≤ n : gcd(d, n) = 1} in coprime residue classes to
moduli varying uniformly in a wide range.

In what follows, U denotes the unit disk in the complex plane, namely, the set {s ∈ C : |s| ≤ 1}.
For given real number z, we say that a positive integer n is z-smooth if it has no prime factor
exceeding z. The number of z-smooth numbers up to x is denoted by Ψ(x, z), a quantity which
has been studied extensively in the literature.
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1



2 PAUL POLLACK AND AKASH SINGHA ROY

Theorem 1.1. Let f : N → U be a multiplicative function and x, y, z,M be positive real
numbers such that M ≥ 1, 4 < y ≤ z1/2 and z < x. Assume that there exists a complex
number ϱ ∈ U such that for all Y ≥ y,

(1.1)
∑

y<p≤Y

f(p) = ϱ(π(Y )− π(y)) +O(MY E(y)),

for some decreasing function E : R+ → R+. Then∑
n≤x

f(n) ≪ |ϱ|x
log z

(
log x

log y

)|ϱ|

exp

(∑
p≤y

|f(p)|
p

)
+Ψ(x, z) +Mx (log x)

(
E(y) + 1

y log y

)
,

where the implied constant depends at most on the implied constant in (1.1).

In applications, the terms involving Ψ(x, z), E(y) and 1/y often become very small, so the
usefulness of the bound is dictated by the size of the first expression. The fact that this
expression appears with a factor of |ϱ| permits a wide applicability of Theorem 1.1. With some
nontrivial additional arguments and less pleasant error terms, this result can be extended to
the case when f may not necessarily take values in the unit disk, but is bounded by a suitable
“divisor function”; see the remark at the end of section 2. One of the main advantages this
bound has over the Halász–Montogmery–Tenenbaum Theorem (as stated in [24, Corollary
III.4.12], say) is the presence of the factor |ϱ|, which gives a wide range of uniformity in
various desired parameters, – especially when f needs to vary over an arbitrarily large set of
multiplicative functions (such as additive or multiplicative characters). Moreover, our bound
is essentially independent from the behavior of f(p) at the primes p ≤ y (except for the size
of f(p)), and this feature often gives rise to better savings in log x than a direct bounding of
the “pretentious distances” coming from Halász’s Theorem. See the last remark at the end of
section 4 for concrete examples of both these phenomena.

Let A(n) :=
∑

pk∥n kp denote the sum of the prime divisors of n counted with multiplicity,

known as the Alladi-Erdős function. A widely applicable criterion of Delange [6] gives necessary
and sufficient conditions for an integer-valued additive function to be equidistributed among
the residue classes to a fixed modulus. This criterion shows that A(n) is equidistributed modulo
any fixed positive integer q. More precise results were established by Alladi and Erdos [1] for
q = 2 and by Goldfeld [8] for general fixed q. In recent work [19], we proved the equidistribution
of A(n) mod q, uniformly for q ≤ (log x)K ; in other words, we established that

#{n ≤ x : A(n) ≡ a (mod q)} ∼ x

q
as x→ ∞,

uniformly in q ≤ (log x)K and in residue classes a mod q (see [18] for our earlier, weaker
result using different methods). Goldfeld noted in [8] that for fixed q, the deviation from
equidistribution is always Oq(x/(log x)

1/2). We establish a uniform version of Goldfeld’s result.

Theorem 1.2. Fix K ≥ 1 and ϵ ∈ (0, 1). We have

#{n ≤ x : A(n) ≡ a (mod q)} =
x

q
+OK,ϵ

(
x

q(log x)1/2−ϵ

)
,

uniformly in q ≤ (log x)K and residue classes a mod q.
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It follows from Goldfeld’s methods in [8] that for q = 6, there is a secondary term of order
x/(log x)1/2, which means that the exponent 1/2 in Theorem 1.2 is essentially best possible. If
one has access to a wider range of uniformity in the prime number theorem, for instance if one
assumes the Generalized Riemann Hypothesis or that q is not divisible by a suitably chosen
exceptional modulus, then one can go beyond the range (log x)K in Theorem 1.2 as well as in
Theorems 1.3 and 1.4 below.

Our arguments for Theorem 1.1 are flexible and can also be modified to yield uniform bounds
on the partial sums of multiplicative functions, when the inputs n are restricted to those with
sufficiently many large prime factors. Such estimates turn out to be very useful in studying
the asymptotic distribution of some classical multiplicative functions, such as Euler’s totient
function φ(n), in coprime residue classes to moduli varying uniformly in a wide range.

Following Narkiewicz [16], we say that an integer-valued arithmetic function g is weakly uni-
formly distributed (or weakly equidistributed) modulo q if gcd(g(n), q) = 1 for infinitely many n
and, for every coprime residue class a mod q,

(1.2) #{n ≤ x : g(n) ≡ a (mod q)} ∼ 1

φ(q)
#{n ≤ x : gcd(g(n), q) = 1}, as x→ ∞.

Narkiewicz shows in [16] that φ(n) is weakly equidistributed precisely to those moduli that are
coprime to 6. Dence and Pomerance [7] also give asymptotic formulae measuring the failure
of weak equidistribution of φ(n) mod 3.

It seems of some of interest to establish weak equidistribution results without the restriction
to a fixed modulus. Here we say that an integer-valued arithmetic function g(n) is weakly
equidistributed mod q, uniformly for q ≤ (log x)K , if:

(i) For every such q, g(n) is coprime to q for infinitely many n, and

(ii) The relation (1.2) holds uniformly in moduli q ≤ (log x)K and in coprime residue classes
a mod q. Explicitly, this means that for any ϵ > 0, there exists X(ϵ) > 0 such that
the ratio of the left hand side of (1.2) to the right hand side lies in (1− ϵ, 1 + ϵ) for all
x > X(ϵ), q ≤ (log x)K and coprime residues a mod q.

The weak equidistribution of certain classes of arithmetic functions to uniformly varying mod-
uli was first investigated by the authors in [14, 17]. In [19], we prove a general theorem
guaranteeing the weak equidistribution of φ(n) uniformly to moduli q ≤ (log x)K coprime to
6; the key idea is to exploit a mixing phenomenon within the group of units mod q (see also
related ideas of De Koninck and Kátai in [5] and [13]). While it is not worthwhile to study
the distribution of φ(n) among the coprime residue classes to even moduli, the corresponding
distribution to odd moduli divisible by 3 is still an interesting question left unaddressed by the
aforementioned results. Furthermore, the error terms that arise from the arguments in [19]
are quite weak. Our final two theorems address these defects. We first establish an effective
estimate demonstrating the weak equidistribution of φ(n) to moduli q ≤ (log x)K coprime to
6, obtaining a strong error term that can be expected to be (essentially) of the correct order
of magnitude.
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Theorem 1.3. Fix K ≥ 1 and ϵ ∈ (0, 1). We have

#{n ≤ x : φ(n) ≡ a (mod q)}

=
1

φ(q)
#{n ≤ x : gcd(φ(n), q) = 1}+OK,ϵ

(
x

φ(q)(log x)1−α(q)(1/3+ϵ)

)
,

uniformly in moduli q ≤ (log x)K that are coprime to 6 and in coprime residue classes a mod q,
where α(q) :=

∏
ℓ|q
(
1− 1

ℓ−1

)
. In particular, φ(n) is weakly equidistributed to moduli q coprime

to 6 growing uniformly up to (log x)K.

The “1/3” in the exponent of log x in the error term of the estimate above arises as the
maximum absolute value of the averages ρχ := 1

φ(q)

∑
v mod q
(v,q)=1

χ(v− 1) taken over the nontrivial

Dirichlet characters χ mod q. The averages ρχ play the roles of the parameter ϱ in the
corresponding analogues of Theorem 1.1 when the role of the multiplicative function f is
played by the functions χ ◦ φ. These functions in turn arise by applying the orthogonality
of Dirichlet characters modulo q to detect the congruence φ(n) ≡ a (mod q). As shown in
section 4, the maximum value of |ρχ| is attained by the characters χ having conductor 5 (in
the case when q is divisible by 5). This suggests (but does not prove) that the constant “1/3”
in the error term of Theorem 1.3 cannot be replaced by a smaller constant in general.

We remark that in the course of our arguments for Theorem 1.3 (as well as Theorem 1.4 below),
we shall obtain sharp upper bounds for the character sums χ(φ(n)) for nontrivial Dirichlet
characters χ to our moduli q. In the range q ≤ (log x)K , these estimates significantly improve
upon those given in the work of Balasuriya, Shparlinski and Sutantyo (the case f(n) = 1 in [2,
Theorem 1]; see [3] and [4] for related results on exponential sums involving the Euler totient).

In a forthcoming manuscript [23], the second named author establishes a variant of Theorem
1.1, that is useful in studying the distribution of the sum-of-divisors function σ(n) :=

∑
d|n d

among the coprime residue classes to moduli varying uniformly in a wide range.

We also give an analogue of Theorem 1.3 for moduli q that are divisible by 3. Work of Dence
and Pomerance [7, Theorem 3.1] shows that for i ∈ {1, 2},

#{n ≤ x : φ(n) ≡ i (mod 3)} ∼ ci
x√
log x

as x→ ∞,

where c1 ≈ 0.6109 . . . and c2 ≈ 0.3284 . . . . Our next result shows a similar phenomenon for
odd moduli divisible by 3 that vary uniformly up to a fixed power of log x: we show that the
count of n ≤ x for which φ(n) lies in a given reduced residue class a mod q is determined by
the count of n ≤ x having φ(n) ≡ a (mod 3).

Theorem 1.4. Fix K ≥ 1 and ϵ ∈ (0, 1). We have

(1.3) #{n ≤ x : φ(n) ≡ a (mod q)} =
2

φ(q)
#{n ≤ x : gcd(φ(n), q) = 1, φ(n) ≡ a (mod 3)}

+OK,ϵ

(
x

φ(q)(log x)1−α(q)(1/3+ϵ)

)
,
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uniformly in coprime residue classes a to moduli q ≤ (log x)K satisfying gcd(q, 6) = 3, where
α(q) :=

∏
ℓ|q
(
1− 1

ℓ−1

)
. As a consequence,

(1.4) #{n ≤ x : φ(n) ≡ a (mod q)} ∼ 2

φ(q)
#{n ≤ x : gcd(φ(n), q) = 1, φ(n) ≡ a (mod 3)}

as x→ ∞, in the same range of uniformity in q and a.

We remark that it is possible to give fairly precise estimates for the main terms in Theorems
1.3 and 1.4 by means of Theorems A and B in [21] (see the remark at the end of section 4).
See also [20] and [19, Proposition 2.1] for similar estimates.

Notation and conventions: We do not consider the zero function as multiplicative (thus,
if f is multiplicative, then f(1) = 1). We write P (n) or P+(n) for the largest prime divisor of
n, with the convention that P (1) = 1. We set P1(n) := P (n) and define, inductively, Pk(n) :=
Pk−1(n/P (n)); thus, Pk(n) is the kth largest prime factor of n (counted with multiplicity),
with Pk(n) = 1 if Ω(n) < k. When there is no danger of confusion, we write (a, b) instead of
gcd(a, b). Throughout, the letters p and ℓ are to be understood as denoting primes. Implied
constants in ≪ and O-notation may always depend on any parameters declared as “fixed”;
other dependence will be noted explicitly (for example, with subscripts). We write logk for the
kth iterate of the natural logarithm.

2. Uniform bounds on the partial sums of multiplicative functions: Proof of
Theorem 1.1

We start by removing the n ≤ x that are either z-smooth or have a repeated prime factor
exceeding y. Since |f(n)| ≤ 1, the contribution of the former n is bounded in absolute value
by Ψ(x, z), while that of the latter n is absolutely bounded by∑

p>y

∑
n≤x
p2|n

1 ≤ x
∑
p>y

1

p2
≪ x

y log y
,

which is also absorbed in the expressions given in the claimed bounds.

It remains to deal with the sum of f(n) over the surviving n, namely those that have P+(n) > z
and no repeated prime factor exceeding y; we denote this sum by

∑∗
n≤x f(n). Such n can

be uniquely written in the form mPj · · ·P1 for some j ≥ 1, where P1 := P+(n) > z and
P+(m) ≤ y < Pj < · · · < P1. As such f(n) = f(m)f(Pj) · · · f(P1) and∑∗

n≤x
f(n) =

∑
j≥1

∑
m≤x

P+(m)≤y

f(m)
∑

P1,...,Pj

P1>z, Pj ···P1≤x/m
y<Pj<···<P1

f(Pj) · · · f(P1)

=
∑
j≥1

∑
m≤x

P+(m)≤y

f(m)
∑

P2,...,Pj

Pj ···P2≤x/mz
y<Pj<···<P2

f(Pj) · · · f(P2)
∑

max{P2,z}<P1≤x/mP2···Pj

f(P1).

Here max{P2, z} is to be replaced by “z” in the case j = 1.
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Invoking the hypothesis (1.1) for the innermost sum on P1, the total size of the resulting error
term is

≪MxE(y)
∑
j≥1

∑
m,P2,...,Pj

mP2···Pj≤x/z

P+(m)≤y<Pj<···<P2

1

mP2 · · ·Pj

≤MxE(y)
∑
n≤x/z

1

n
≪MxE(y) log x.

We now obtain∑∗

n≤x
f(n) = ϱ

∑
j≥1

1

(j − 1)!

∑
m≤x

P+(m)≤y

f(m)
∑

z<P1≤x/m

∑
P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P2) · · · f(Pj)

+O(MxE(y) log x).

(2.1)

Now for j ≥ 2 and each i ∈ {2, . . . , j}, the hypothesis (1.1) yields

∑
y<Pi≤x/mP1···Pi−1Pi+1···Pj

Pi<P1, r ̸=i =⇒ Pr ̸=Pi

f(Pi) =
∑

y<Pi≤x/mP1···Pi−1Pi+1···Pj

Pi<P1

f(Pi) +O(j)

= ϱ
∑

y<Pi≤x/mP1···Pi−1Pi+1···Pj

Pi<P1, r ̸=i =⇒ Pr ̸=Pi

1 +O

(
j +

Mx

mP1 · · ·Pi−1Pi+1 · · ·Pj

E(y)
)
.

(2.2)

In order to estimate the innermost sum in the main term of (2.1), we invoke this estimate
successively for all j ≥ 2 and each i ∈ {2, . . . , j}. Indeed∑

P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P2) · · · f(Pj) =
∑

P3,...,Pj∈(y,P1)
P3,...,Pj distinct
P3···Pj≤x/myP1

f(P3) · · · f(Pj)
∑

y<P2≤x/mP1P3···Pj

P2<P1, r ̸=2 =⇒ P2 ̸=Pr

f(P2)

= ϱ
∑

P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P3) · · · f(Pj) +O(Ẽ),

where

Ẽ := j
∑

P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1 +
MxE(y)
mP1

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1

P2 · · ·Pj−1

,

and we have noted that the error term resulting from the application of (2.2) for i = 2 is,

by relabelling, equal to Ẽ . Likewise, invoking (2.2) for i = 3, . . . , j to successively remove the
f(P3), . . . , f(Pj), we obtain∑

P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P2) · · · f(Pj) = ϱj−1
∑

P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

1 +O((j − 1)Ẽ).
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Plugging this into (2.1) for each j ≥ 2, we obtain an error term of size

≪
∑
j≥2

1

(j − 1)!

∑
m≤x

P+(m)≤y

∑
z<P1≤ x

myj−1

{
j2

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1 +
MxjE(y)
mP1

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1

P2 · · ·Pj−1

}

≪
∑
j≥2

1

(j − 2)!

∑
m≤x

P+(m)≤y

∑
z<P1≤ x

myj−1

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

{
log x

log y
+

MxE(y)
mP1 · · ·Pj−1

}

≪
∑
j≥2

∑
m,P1,...,Pj−1

mP1···Pj−1≤x/y

P1>z, P+(m)≤y<Pj−1<···<P1

(
log x

log y
+

MxE(y)
mP1 · · ·Pj−1

)

≪ log x

log y
·
∑
n≤x/y

1 + MxE(y)
∑
n≤x/y

1

n
≪Mx(log x)

(
E(y) + 1

y log y

)
,

where we have noted that yj ≤ x and omitted the (j − 2)! to reintroduce the ordering on
P2, . . . , Pj−1. This leads to the estimate
(2.3)∑∗

n≤x
f(n) = ϱ

∑
j≥1

ϱj−1

(j − 1)!

∑
m≤x

P+(m)≤y

f(m)
∑

P1,...,Pj

P1>z; P1···Pj≤x/m
P2···Pj∈(y,P1) distinct

1+O

(
Mx(log x)

(
E(y) + 1

y log y

))
.

Now the main term above is absolutely bounded by

|ϱ|
∑
j≥1

|ϱ|j−1

(j − 1)!

∑
m≤x

P+(m)≤y

|f(m)|
∑

P2,...,Pj∈(y,x)
P2···Pj≤x/mz

∑
z<P1≤x/mP2···Pj

1

≪ |ϱ|x
log z

∑
j≥1

|ϱ|j−1

(j − 1)!

∑
m≤x

P+(m)≤y

|f(m)|
m

∑
P2,...,Pj∈(y,x)

1

P2 · · ·Pj

.

Since |f(n)| ≤ 1 for all n, the sum on m above is no more than

∏
p≤y

(
1 +

∑
v≥0

|f(pv)|
pv

)
≤ exp

(∑
p≤y

|f(p)|
p

+O

(∑
p≤y

1

p2

))
≪ exp

(∑
p≤y

|f(p)|
p

)
.

On the other hand, the sum on P2, . . . , Pj is

≤

( ∑
y<p≤x

1

p

)j−1

≤
(
log

(
log x

log y

)
+O(1)

)j−1

.
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Collecting estimates, we find that the main term in (2.3) is

≪ |ϱ|x
log z

exp

(∑
p≤y

|f(p)|
p

)∑
j≥1

1

(j − 1)!

(
|ϱ| log

(
log x

log y

)
+O(1)

)j−1

≪ |ϱ|x
log z

(
log x

log y

)|ϱ|

exp

(∑
p≤y

|f(p)|
p

)
,

completing the proof of the theorem.

Remark. We can extend Theorem 1.1 to the case when our multiplicative function f is bounded
by some divisor function τκ at all positive integers and when |ϱ| ≤ κ (here κ ≥ 1 is a fixed real
number). 1 We get uniformly for such f satisfying (1.1),

(2.4)
∑
n≤x

f(n) ≪ |ϱ|x
log z

(
log x

log y

)|ϱ|

exp

(∑
p≤y

|f(p)|
p

)

+
(
xΨ(x, z)(log x)κ

2−1
)1/2

+Mx (log x)κ
(
E(y) + 1

y log y

)
,

where x, y, z, E are as in Theorem 1.1 and where the implied constant depends at most on κ
and on the implied constant in (1.1).

Indeed by Cauchy–Schwarz and [10, Theorem 00], the contribution of the z-smooth n ≤ x is
no more (in size) than

∑
n≤x

τκ(n)1P (n)≤z ≤

(
Ψ(x, z)

∑
n≤x

τκ(n)
2

)1/2

≪

(
xΨ(x, z)

log x

∑
n≤x

τκ(n)
2

n

)1/2

;

here the hypotheses for Theorem [10, Theorem 00] follow from Chebyshev’s bounds in con-
junction with the fact that
(2.5)

τκ(p
v) =

(
κ+ v − 1

v

)
≤
∏

r≤10κ

(
1 +

κ− 1

r

)
·
∏

10κ<r≤v

(
1 +

κ− 1

r

)
≤ κ10κ(1.1)v ≪ (1.1)v.

As such, we obtain

∑
n≤x

τκ(n)1P (n)≤z ≪

(
xΨ(x, z)

log x

∏
p≤x

(
1 +

∑
v≥1

τκ(p
v)2

pv

))1/2

≪

(
xΨ(x, z)

log x
exp

( ∑
p≤x, v≥1

τκ(p
v)2

pv

))1/2

.

Noting that τκ(p) = κ and using (2.5) to bound the last sum above, we deduce that the total

contribution of the z-smooth n to the left hand side of (2.4) is ≪ (xΨ(x, z)(log x)κ
2−1)1/2,

which is absorbed in the right side of (2.4).

1Here τκ is the multiplicative function coming from the coefficients of the Dirichlet series ζ(s)κ, so that
τκ(p

v) =
(
κ+v−1

v

)
for all primes p and all positive integers v.
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Moreover by (2.5), the contribution to the sum
∑

n≤x f(n) from all n divisible by the square
of a prime exceeding y is no more than∑

p>y
v≥2

∑
n≤x: pv∥n

τκ(n) ≤
∑
p>y
v≥2

τκ(p
v)

∑
m≤x/pv

τκ(m) ≪ x(log x)κ−1
∑
p>y
v≥2

(
1.1

p

)v

≪ x(log x)κ

y log y
,

which is also absorbed in the right of (2.4). Here we have used the crude bound

(2.6)
∑
n≤X

τκ(n) =
∑
n≤X

∑
d|n

τκ−1(d) =
∑
d≤X

τκ−1(d)
∑
n≤X
d|n

1

≤ X
∑
d≤X

τκ−1(d)

d
≤ X

∏
p≤X

(
1 +

κ− 1

p
+O

(
1

p2

))
≪ X(logX)κ−1.

To establish (2.4), it thus remains to bound the sum of f(n) over non z-smooth n ≤ x having
no repeated prime factor exceeding y. To do this, we follow the arguments leading to (2.3),
recalling that |ϱ| ≤ κ and |f(p)| ≤ κ for any prime p. The corresponding error term is

≪
∑
j≥2

κj−1

(j − 2)!

∑
m≤x

P+(m)≤y

|f(m)|
∑

z<P1≤ x

myj−1

j
∑

P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1

+
∑
j≥2

κj−1

(j − 2)!

∑
m≤x

P+(m)≤y

|f(m)|
∑

z<P1≤ x

myj−1

MxE(y)
mP1

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1

P2 · · ·Pj−1

≪
∑
j≥2

∑
m,P1,...,Pj−1

mP1···Pj−1≤x/y

P1>z, P+(m)≤y<Pj−1<···<P1

(
log x

log y
· τκ(mP1 . . . Pj−1) + MxE(y) · τκ(mP1 . . . Pj−1)

mP1P2 · · ·Pj−1

)

≪ log x

log y
·
∑
n≤x/y

τκ(n) + MxE(y)
∑
n≤x/y

τκ(n)

n
≪Mx(log x)κ

(
E(y) + 1

y log y

)
.

Here the last step uses (2.6) as well as the bound
∑

n≤x/y τκ(n)/n ≪ X(logX)κ that can be

established by the last part of the computation in (2.6). This shows that the analogue of (2.3)
holds with the log x in the error term replaced by (log x)κ. Now we simply carry out the rest
of the arguments of Theorem 1.1: The only additional point is to note that

∑
m: P+(m)≤y

|f(m)|
m

≤
∏
p≤y

(
1 +

∑
v≥1

|f(pv)|
pv

)
≪ exp

(∑
p≤y

|f(p)|
p

)
,

once again with the last bound coming from the fact that
∑

p,v≥2 τκ(p
v)/pv ≪ 1 by (2.5). This

completes the proof of the desired bound (2.4).
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3. Equidistribution of the Alladi-Erdős function: Proof of Theorem 1.2

By the orthogonality of the additive characters mod q, we have

(3.1)
∑
n≤x

A(n)≡a (mod q)

1 =
x

q
+

1

q

∑
0<r<q

e

(
−ar
q

)∑
n≤x

e

(
rA(n)

q

)
.

Let y := exp((log x)ϵ/2) and z := x1/ log2 x. Then for each r ∈ {0, 1, . . . , q−1}, the multiplicative

function f(n) := e(rA(n)/q) satisfies the hypothesis (1.1) with ϱ := ρr :=
1

φ(q)

∑
v mod q
(v,q)=1

e
(

rv
q

)
.

Indeed by the Siegel-Walfisz theorem (as stated in [15, Corollary 11.21]), we find that∑
y<p≤Y

e

(
rA(p)

q

)
=
∑

y<p≤Y

e

(
rp

q

)
=
∑

v mod q
(v,q)=1

e

(
rv

q

) ∑
y<p≤Y

p≡v (mod q)

1

=
∑

v mod q
(v,q)=1

e

(
rv

q

){
1

φ(q)

∑
y<p≤Y

1 +O
(
Y exp(−C0

√
log Y )

)}

= ρr(π(Y )− π(y)) +O(φ(q)Y exp(−C0

√
log y)),

(3.2)

uniformly for all q ≤ (log x)K and Y ≥ y. Here C0 > 0 is an absolute constant and we have
noted that (log x)K < y/2 for all sufficiently large x (recall that implied constants are allowed
to depend on the fixed number K). This verifies hypothesis (1.1) with ϱ := ρr, M := φ(q) and
E(y) := exp(−C0

√
log y). From Theorem 1.1, we obtain

(3.3)
∑
n≤x

e

(
rA(n)

q

)
≪ |ρr|x

(log x)1−|ρr|−2ϵ/3
+

x

(log x)(1+o(1)) log3 x
,

where we have noted that Ψ(x, z) ≪ x/(log x)(1+o(1)) log3 x by well-known results on smooth
numbers (for instance [24, Theorem 5.13 and Corollary 5.19, Chapter III.5]).

The sum ρr is a (normalized) Ramanujan sum and is nonzero only if q′r := q/(q, r) is squarefree
(see [12] or [15] for some standard properties of Ramanujan sums). Moreover, unless q is even
and r = q/2, we have q′r ≥ 3, so that |ρr| ≤ 1

φ(q′r)
≤ 1/2. This shows that

(3.4)∑
0<r<q
r ̸=q/2

∣∣∣∣∣∑
n≤x

e

(
rA(n)

q

)∣∣∣∣∣≪
( ∑

0<r<q
q′r squarefree

1

φ(q′r)

)
x

(log x)1/2−2ϵ/3
+

x

(log x)
1
2
log3 x

≪ x

(log x)1/2−ϵ
;

here we have noted that for each squarefree divisor d of q, there are exactly φ(d) many residues
r mod q for which q′r = q/(q, r) = d, so that∑

0<r<q
q′r squarefree

1

φ(q′r)
≤

∑
d|q

d squarefree

1 = 2ω(q) ≤ (log x)ϵ/6.

It remains to deal with the case r = q/2, which arises only for even q. But for this value of
r, a classical estimate of Hall and Tenenbaum for the mean values of multiplicative functions
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taking values in [−1, 1] (see [24, Theorem 4.14]) yields

(3.5)
∑
n≤x

e

(
rA(n)

q

)
=
∑
n≤x

(−1)A(n) ≪ x

(log x)3/5
.

(In fact, Alladi and Erdős [1] show that the left hand side of (3.5) is O(x exp(−c0
√
log x log2 x))

for some absolute constant c0 > 0.) Inserting (3.4) and (3.5) into (3.1) completes the proof of
the theorem.

4. Distribution of Euler’s totient to odd moduli:
Proof of Theorems 1.3 and 1.4

In what follows, we assume q to be any odd positive integer less than or equal to (log x)K ,
until stated otherwise. We abbreviate α(q) to α; it will be useful to note that for all odd q,
we have α ≫ 1/ log2(3q). We first state a rough estimate on the count of n ≤ x having φ(n)
coprime to q, for odd numbers q ≤ (log x)K .

Proposition 4.1. Fix K > 0. We have

#{n ≤ x : (φ(n), q) = 1} =
x

(log x)1−α
exp(O((log log (3q))O(1))),

uniformly in odd q ≤ (log x)K.

The above result is a special case of Proposition 2.1 in [19] (cf. work of Scourfield [20, 21] who
gives more precise estimates). In view of Proposition 4.1, it remains to show the first assertion
of Theorem 1.3 in order to complete the proof of the theorem. To that end, we also state the
following lemma, which is a special case of [19, Lemma 2.4].

Lemma 4.2. For each positive integer q and each real number x ≥ 3q,∑
p≤x

1(p−1,q)=1

p
= α log2 x+O((log log (3q))O(1)).

Coming to the first assertion of Theorem 1.3, set y := exp((log x)ϵ/2) and z := x1/ log2 x as in
the proof of Theorem 1.2. We start by removing from the count of n ≤ x satisfying φ(n) ≡ a
(mod q) those that are either z-smooth or have a repeated prime factor exceeding y. As
observed before, the total contribution of such n is ≪ Ψ(x, z) + x/y ≪ x/(log x)(1+o(1)) log3 x,
which is negligible in comparison to the error term in the statement of the theorem.

Among the surviving n, we also remove those that have P2(n) ≤ y: any such n can be written in
the form n = mP , where P = P (n) > z, m is y-smooth and φ(n) = φ(m)φ(P ) = φ(m)(P −1).
As such, the condition φ(n) ≡ a (mod q) forces φ(m) to be coprime to q and, for each choice
of m, constrains P ∈ (z, x/m] to at most one coprime residue class modulo q. By the Brun-
Titchmarsh theorem, there are ≪ x/φ(q)m log(z/q) ≪ x log2 x/φ(q)m log x many possible
choices of P for each choice of m. Consequently, the total contribution of the surviving n ≤ x
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having P2(n) ≤ y is

≪ x log2 x

φ(q) log x

∑
m: P+(m)≤y

1(φ(m),q)=1

m
≪ x log2 x

φ(q) log x
exp

(∑
p≤y

1(p−1,q)=1

p

)

≪ x log2 x

φ(q)(log x)1−αϵ/2
exp((log2(3q))

O(1)) ≪ x

φ(q)(log x)1−2αϵ/3
,

where we invoked Lemma 4.2 in order to estimate the sum
∑

p≤y 1(p−1,q)=1/p and recalled that

α ≫ 1/ log3 x for all odd q ≤ (log x)K . Collecting estimates, we have so far shown that∑
n≤x

φ(n)≡a (mod q)

1 =
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

1φ(n)≡a (mod q) +O

(
x

φ(q)(log x)1−2αϵ/3

)
.

By the orthogonality of the Dirichlet characters mod q, we have 1φ(n)≡a (mod q) =
1(φ(n),q)=1

φ(q)
+

1
φ(q)

∑
χ ̸=χ0 mod q χ(a)χ(φ(n)), where χ0 denotes the principal character modulo q, and the last

sum is over the nonprincipal Dirichlet characters χ mod q. This yields

∑
n≤x

φ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x

(φ(n),q)=1

1

+
1

φ(q)

∑
χ ̸=χ0 mod q

χ(a)
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(φ(n)) +O

(
x

φ(q)(log x)1−2αϵ/3

)
.

(4.1)

Here we have used the same arguments as before to see that there are O(x/(log x)1−2αϵ/3) many
n ≤ x satisfying (φ(n), q) = 1 but failing at least one of the following three conditions:

(i) P (n) > z,

(ii) p > y =⇒ p2 ∤ n,

(iii) P2(n) > y.

Indeed, any n satisfying conditions (i) and (ii) but failing condition (iii) is of the form mP
with P+(m) ≤ y, P = P+(n) ∈ (z, x/m] and φ(n) = φ(m)(P −1). As such, (φ(m), q) = 1 and
the number of P given m is ≪ x/m log z ≪ x log2 x/m log x, summing which over m yields
the claimed bound.

We now apply the methods from the proof of Theorem 1.1 in order to estimate the inner
sums of χ(φ(n)) occurring in (4.1). Any n having P (n) > z, P2(n) > y and no repeated
prime factor exceeding y can be uniquely written in the form mPj · · ·P1 for some j ≥ 2, where
P1 = P (n) > z and P (m) ≤ y < Pj < · · · < P1. This shows that∑

n≤x
P (n)>z, P2(n)>y

p>y =⇒ p2∤n

χ(φ(n)) =
∑
j≥2

∑
m≤x

P (m)≤y

χ(φ(m))
∑

P1,...,Pj

Pj ···P1≤x/m
P1>z, y<Pj<···<P1

χ(P1 − 1) · · ·χ(Pj − 1).
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We proceed as in the proof of Theorem 1 to successively remove χ(P1 − 1), · · · , χ(Pj − 1),
with the input from (1.1) replaced by the estimate for

∑
y<p≤Y χ(p−1) analogous to (3.2) and

coming from the Siegel-Walfisz Theorem. After the dust settles, we are left with∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(φ(n)) =
∑
j≥2

(ρχ)
j

(j − 1)!

∑
m≤x

P (m)≤y

χ(φ(m))
∑

P1,...,Pj

P1>z, Pj ···P1≤x/m
P2,...,Pj∈(y,P1) distinct

1

+O(x exp(−K0

√
log y)),

where ρχ := 1
φ(q)

∑
v mod q χ0(v)χ(v − 1) and K0 > 0 is a constant depending at most on K.

Hereafter, carrying out the rest of the proof of Theorem 1.1 yields

∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(φ(n)) ≪ |ρχ|2
x log2 x

log z
· (log x)|ρχ| exp

(∑
p≤y

1(p−1,q)=1

p

)
+ x exp(−K0

√
log y)

≪ |ρχ|2
x

(log x)1−|ρχ|−2αϵ/3
+ x exp(−K0

√
log y),

(4.2)

where we have recalled Lemma 4.2 while passing to the second line above.

To use the last bound, we need to better understand the |ρχ|. Let f(χ) denote the conductor
of χ mod q, so that f(χ) > 1 and f(χ) | q. We can write χ uniquely in the form

∏
ℓe∥q χℓ,

where each χℓ is a character mod ℓe and χℓ is nontrivial precisely when ℓ | f(χ). Now φ(q)ρχ =∏
ℓe∥q Sχ,ℓ, where for each prime power ℓe ∥ q,

(4.3) Sχ,ℓ :=
∑

v mod ℓe

χ0,ℓ(v)χℓ(v − 1) =
∑

v mod ℓe
(v,ℓ)=1

χℓ(v − 1) =
∑

u mod ℓe

χℓ(u)−
∑

u mod ℓe
u≡−1 (mod ℓ)

χℓ(u).

Here χ0,ℓ denotes the trivial character mod ℓe, and we have noted that as v runs over the
coprime residues mod ℓe, the expression v−1 runs over all the residues mod ℓe except for those
congruent to −1 mod ℓ. The first sum in the rightmost expression in (4.3) is 1χℓ=χ0,ℓ

φ(ℓe).
We claim that the second sum is zero unless f(χℓ) | ℓ, in which case it is χℓ(−1)ℓe−1. Indeed,
the second sum is equal to χℓ(−1)

∑
u mod ℓe

u≡1 (mod ℓ)
χℓ(u), and this latter sum is invariant upon

multiplication by an element lying in the subgroup of residues that are 1 mod ℓ, and hence is
non-vanishing precisely when χℓ restricts to the trivial character on this subgroup. This shows
that if the second sum is nonzero, then f(χℓ) | ℓ. Conversely, if f(χℓ) | ℓ, then it is clear that
the second sum is equal to χℓ(−1)

∑
u mod ℓe

u≡−1 (mod ℓ)
1 = χℓ(−1)ℓe−1, establishing our claim.

Altogether, we obtain

Sχ,ℓ = 1χℓ=χ0,ℓ
φ(ℓe)− 1f(χℓ)|ℓ χℓ(−1)ℓe−1 = 1f(χℓ)|ℓ ℓ

e−1
(
1ℓ∤f(χ)(ℓ− 1)− χℓ(−1)

)
for each prime power ℓe ∥ q. Multiplying this relation over all these prime powers, we obtain
(4.4)

ρχ =
∏
ℓe∥q

Sχ,ℓ

φ(ℓe)
= 1f(χ) squarefree

∏
ℓe∥q

(
1ℓ∤f(χ) −

χℓ(−1)

ℓ− 1

)
= 1f(χ) squarefree

(−1)ω(f(χ))χ(−1)α∏
ℓ|f(χ)(ℓ− 2)

.
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If 3 | q, let ψ denote the unique character mod q induced by the nontrivial character mod 3.
Then for any nontrivial character χ ̸= ψ mod q for which ρχ ̸= 0, its conductor f(χ) has a
prime divisor at least 5, so that |ρχ| ≤ α/3 by (4.4). As such, (4.2) yields for all such χ,

(4.5)
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(φ(n)) ≪ |ρχ|2
x

(log x)1−(1/3+2ϵ/3)α
+ x exp(−K0

√
log y).

But from (4.4) and the fact that there are exactly
∏

ℓ|d(ℓ−2) primitive characters modulo any
squarefree integer d, we find that∑
χ mod q

|ρχ|2 ≤ α2
∑
d|q

d squarefree

1∏
ℓ|d(ℓ− 2)2

∑
χ mod q
f(χ)=d

1 ≤ α2
∑
d|q

d squarefree

1∏
ℓ|d(ℓ− 2)

≤ α2
∏
ℓ|q

ℓ− 1

ℓ− 2
= α.

Summing the bound (4.5) over all nontrivial characters χ ̸= ψ mod q, and plugging the
resulting bound into (4.1), we thus obtain

∑
n≤x

φ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x

(φ(n),q)=1

1 +
13|qψ(a)

φ(q)

∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

ψ(φ(n)) +O

(
x

φ(q)(log x)1−α(1/3+ϵ)

)

=
1

φ(q)

∑
n≤x

(φ(n),q)=1

1 +
13|qψ(a)

φ(q)

∑
n≤x

ψ(φ(n)) +O

(
x

φ(q)(log x)1−α(1/3+ϵ)

)
.

(4.6)

In passing to the second line above, we have recalled our previous bound on the count of n ≤ x
having gcd(φ(n), q) = 1 but failing one of conditions (i)–(iii) in the paragraph following (4.1).

The last equality in (4.6) already establishes the first assertion of Theorem 1.3 for moduli
q ≤ (log x)K coprime to 6, thus completing the proof of that theorem.

Coming to the proof of Theorem 1.4, we now consider q ≤ (log x)K satisfying gcd(6, q) = 3, so
that q is odd and divisible by 3. By definition of ψ, we have

ψ(φ(n)) =


ψ(a), if gcd(φ(n), q) = 1 and φ(n) ≡ a (mod 3),

ψ(−a) = −ψ(a), if gcd(φ(n), q) = 1 and φ(n) ≡ −a (mod 3),

0, if gcd(φ(n), q) ̸= 1.

Inserting this into (4.6) and recalling that ψ(a)ψ(a) = 1, we obtain the first estimate claimed
in Theorem 1.4. To obtain the final asymptotic formula in the theorem, it suffices to show
that

(4.7) 3
∑

n≤x: (φ(n),q)=1
φ(n)≡a (mod 3)

1 ≥
∑
n≤x/4

(φ(n),q)=1

1.

Indeed once we show this, an application of Proposition 4.1 will reveal that the right hand side
of the above inequality grows strictly faster than the O-term in (1.3), which will lead to (1.4).
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Finally to prove (4.7), we split the right hand side of the the inequality as∑
n≤x/4

(φ(n),q)=1
φ(n)≡a (mod 3)

1 +
∑

n≤x/4: 2∤n
(φ(n),q)=1

φ(n)≡−a (mod 3)

1 +
∑

n≤x/4: 2|n
(φ(n),q)=1

φ(n)≡−a (mod 3)

1.

We denote the sum on the left hand side of (4.7) by S0; in other words, S0 is one-third the
left hand side of (4.7). We claim that each of the three sums in the above display is no more
than S0. Indeed, any n counted in the first of the three sums is automatically counted in S0.
For any n counted in the second sum above, φ(4n) = 2φ(n) is coprime to q (since q is odd)
and φ(4n) ≡ −φ(n) ≡ a (mod 3), so that 4n ≤ x is counted in S0. Finally, for any n counted
in the third sum above, we have 2n ≤ x/2, and φ(2n) = 2φ(n) ≡ −φ(n) ≡ a (mod 3) and
gcd(φ(2n), q) = gcd(2φ(n), q) = 1, so that 2n ≤ x is counted in S0. This establishes the bound
(4.7), completing the proof of Theorem 1.4.

Remark. It is worth pointing out that the count of n ≤ x satisfying gcd(φ(n), q) = 1 and
φ(n) ≡ a (mod 3) (which appears in the main term on the right hand side of (1.3)) is of the
same order of magnitude as the count of n ≤ x satisfying gcd(φ(n), q) = 1. In other words,
these two quantities are bounded by constant multiples of one another (said constants being
independent of q). This follows by combining the lower bound (4.7) with Theorems A and B
in [21].

Remark. To substantiate some of the remarks made after the statement of Theorem 1.1, note
that if we were to directly invoke the Halász–Montogomery–Tenenbaum (HMT) Theorem (as
in [24, Corollary III.4.12], say) in the proofs of Theorems 1.2 and 1.3 so as to estimate the
sums

∑
n≤x e(rA(n)/q) and

∑
n≤x χ(φ(n)), then we would get for any fixed δ ∈ (0, 1),

∑
n≤x

e

(
rA(n)

q

)
≪ x

(log x)1/2−δ
,
∑
n≤x

χ(φ(n)) ≪ x

(log x)1−(α/3+δ)

(The “pretentious distances” can be bounded as in [18, Lemma 3.3].) The second expression
above may become larger than the main term

∑
n≤x: (φ(n),q)=1 1 if α = α(q) is too small

compared to δ. Contrast this with the bound (4.5) where the exponent of log x was 1 −
α(1/3 + 2ϵ/3); this latter difference arises due to the fact that a direct application of HMT
requires control on the oscillatory behavior of χ(p− 1) at primes p ≤ y whereas Theorem 1.1
doesn’t. Now supplementing HMT with anatomical arguments that already constitute part of
the arguments of Theorem 1.1 (see also [22, Theorem 5.5]), we can get replace “1− (α/3+ δ)”
with the desired “1− (α/3)(1+ δ)”. But even then, both of the above bounds miss the factors
of |ρr| and |ρχ|2 in (3.3) and (4.5) respectively, which are crucial in ensuring that the total
contribution of these character sums (over all nonzero r or all nontrivial χ) does not become
too large. In fact, if we sum the above bounds over all r (resp. over all χ), then we would get
the weaker versions of Theorems 1.2–1.4 without the 1/q or 1/φ(q) in the error terms; this
would lead to much more limited ranges of uniformity in q.
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