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Abstract. By suitably combining ideas from the “anatomy of integers” with methods from
classical analytic number theory, we establish a new bound on mean values of multiplicative
functions under very natural and general hypotheses. This appears to be one of the first results
of its kind as it is able to detect crucial power savings missed in known results in the literature,
whilst being highly uniform in its parameters and containing only flexible error terms that can
be bounded easily in applications. Using this result, we study the distribution of the sum-of-
divisors function σ(n) in coprime residue classes to moduli q ≤ (log x)K , extending results of

Śliwa (who had studied this problem for fixed moduli) and obtaining essentially best possible
qualitative and quantitative analogues of the Siegel–Walfisz theorem for primes in progressions,
with primes replaced by values of σ(n). We are able to obtain precise asymptotics for how
often σ(n) lands in a given coprime residue class mod q, that are uniform in a wide range of
q as well as optimal in the error term, the arithmetic restrictions on q and in various other
parameters. As a consequence of our results, we establish that the values of σ(n) sampled
over n ≤ x with σ(n) coprime to q are asymptotically equidistributed among the coprime
residue classes mod q, uniformly for odd q ≤ (log x)K . On the other hand, if q is even and not
divisible by 3, then equidistribution is possible only when we restrict to inputs n having six
(or for squarefree q, four) prime factors exceeding q.

1. Introduction

Mean values of multiplicative functions has been a central area of research and a topic of ardent
interest in analytic and multiplicative number theory. Two of the classical results in the subject
are the theorem of Halász [17] (see [40, Corollary III.4.12] for a precise version) which provides
a highly general upper bound on the partial sums of any multiplicative function taking values in
the (complex) unit disk, and the analytic method of Landau–Selberg–Delange (see [40, Chapter
II.5]) which provides a highly precise asymptotic series for the partial sums of a multiplicative
function whose Dirichlet series behaves like a power of the Riemann zeta function. There is a
rich variety of literature filling this wide spectrum from generality to precision, with predom-
inant authors such as de la Bretèche, Granville, Hall, Harper, Koukoulopoulos, Montgomery,
Soundararajan, Tenenbaum, Vaughan and others [18, 19, 20, 36, 40, 24, 16, 41, 13, 14, 15, 8]
studying the problem of estimating mean values of multiplicative functions taking values in the
unit disk. However, despite the extensive amount of literature on the subject, situations still
arise where known estimates either turn out to not be precise enough, or come with additional
error terms that become too large in applications to yield any useful information, or contain
unmanageable expressions that simply cannot be bounded in practice.
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One such situation is in the study of the distribution of values of arithmetic functions in residue
classes to uniformly varying moduli. While this question has been thoroughly studied for fixed
moduli, the first steps towards obtaining results where the moduli are allowed to vary in a
wide range seem to have been taken in [22, 31, 32]. However despite the panoply of mean value
estimates in the literature, the lack of a suitable estimate that is both sufficiently precise and
uniform compelled the authors to largely avoid multiplicative machinery and resort to more
‘quasielementary’ combinatorial methods. One downside of this was that it seemed somewhat
hopeless to get a satisfactory estimate for how often a multiplicative function takes values
from a given residue class when the modulus is allowed to vary in a wide range. Furthermore,
these results and methods did not have satisfactory applications to various commonly-studied
arithmetic functions.

In recent joint work with Pollack [30], we took the first steps towards (partially) addressing
the first of these issues: We gave a new upper bound on the partial sum of a multiplicative
function taking values in the unit disk. Using this result, we were able to quantitatively study
the distribution of the Alladi-Erdős function A(n) :=

∑
pk∥n k · p and Euler’s totient function

φ(n) := #{1 ≤ d ≤ n : gcd(d, n) = 1} in residue classes to moduli that were allowed to
vary uniformly in a wide range. As a consequence, we were able to deduce the equidistribu-
tion of these functions in residue classes to varying moduli (interpreted appropriately). Our
results extended those of Goldfeld [12] and Narkiewicz [25] who had studied the corresponding
questions for fixed moduli.

Some closely related and prevalent multiplicative functions are the sum-of-divisors function
σ(n) =

∑
d|n d and the “sum-of-divisor powers” functions σν(n) =

∑
d|n d

ν . The distribution

of these functions to fixed moduli has received immense interest in the literature. Śliwa [39]
obtains a necessary and sufficient criterion for σ(n) to be equidistributed among the coprime
residue classes mod q, and his result was extended (either completely or partially) to the
functions σν(n) by Narkiewicz, Rayner, Dobrowolski, Fomenko and others; see [10], [29], [26],
[27, Theorem 6.12], [34], [35]. However, none of the results mentioned so far or the methods
used in them (including work in [30]) are able to give satisfactory qualitative or quantitative
results on the distribution of σ(n) in coprime residue classes to varying moduli.

Motivated by these problems, our first main result in this manuscript is a variant of the main
result Theorem 1.1 in [30]. We give a sharp yet flexible upper bound on the mean values
of a multiplicative function, that can detect certain crucial power savings missed in previous
literature, whilst remaining highly uniform in its parameters and containing only error terms
that are easy to bound and optimize. In what follows, U = {s ∈ C : |s| ≤ 1} denotes the
unit disk in the complex plane, π(y) is the number of primes up to y, and Ψ(x, z) denotes the
number of z-smooth positive integers up to x (i.e., those that have no prime factor exceeding
z). The quantity Ψ(x, z) has been studied extensively in the literature (see for instance, [40,
Chapter III.5]).

Theorem 1.1. Let f : N → U be a multiplicative function and x, y, z,M be positive real
numbers such that M ≥ 1, 1 < z < x and e11/2 ≤ y ≤ z1/(18 log log z)

2
. Assume that there exists
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ϱ ∈ U and a decreasing function E : R+ → R+ satisfying limX→∞ E(X) = 0, such that

(1)
∑

y<p≤Y

f(p) = ϱ(π(Y )− π(y)) +O(MY E(y))

for all Y ≥ y. Then we have the following upper bound

(2)
∑
n≤x

f(n) ≪ |ϱ|x
log z

(
log z

log y

)Re(ϱ)

exp

(∑
p≤y

|f(p)|
p

)

+
x(log y)1+|ϱ|

(log z)2−Re(ϱ)
exp

(∑
p≤y

|f(p)|
p

)
+Ψ(x, z) +Mx(log x)2

(
E(y) + 1

y

)
,

where the implied constant depends at most on the implied constant in (1).

A few comments are in order. The assumption (1) says that f behaves like a constant on
average at the primes, which is a very standard hypothesis in several mean value estimates.
The parameters y and z can be chosen quite freely in applications since the technical conditions
on them are usually quite easy to satisfy. This enhances the flexibility of our bounds.

The crucial new ingredient in this bound is the blending of combinatorial ideas belonging to the
realm of the “anatomy of integers” with classical analytic methods from multiplicative number
theory. While most mean value estimates in the literature rely predominantly on the latter,
the proof of the above theorem also relies heavily on the former: We split off the parts of our
inputs n that are divisible by very large primes, so as to essentially rewrite the sum

∑
n≤x f(n)

in terms of a multiplicative function exhibiting high cancellation. However at the same time,
in order to detect this sufficient cancellation, we do crucially require “pure analytic” inputs
coming from an explicit version of the Landau–Selberg–Delange method enunciated by Chang
and Martin [6].

In applications, it is usually the sizes of the first two terms that determines the usefulness of
the bound (2); this is because for many natural choices of y and z, the terms involving Ψ(x, z),
E(y) and 1/y in (2) typically become very small. The crucial difference between this bound and
the one in Theorem 1.1 of [30] is the factor (log z)Re(ϱ) in the first expression, whose analogue
in [30, Theorem 1.1] contained the larger factor (log x)|ϱ|. These greater savings turn out to
play a crucial role in certain applications. However, our bound above cannot entirely subsume
[30, Theorem 1.1] because the additional term with (log y)1+|ϱ| (which has no analogue in [30,
Theorem 1.1]) can sometimes limit the applicability of our bound. We shall witness these
phenomena in our applications (see the remark following the proof of Proposition 5.4).

Both Theorem 1.1 and its arguments can be used to study the asymptotic distribution of
multiplicative functions in coprime residue classes to moduli varying uniformly in a wide range.
Here it is important to clarify that the naive notion of “uniform distribution in residue classes”
1 is not the correct notion to work with: For instance, it follows from classical results that
the Euler totient function φ(n) is almost always divisible by any fixed integer q and the same
is true for σ(n). (This means that φ(n) and σ(n) are divisible by q for all n ≤ x with at

1We say that an integer-valued arithmetic function g is uniformly distributed (or equidistributed) modulo q if
#{n ≤ x : g(n) ≡ b (mod q)} ∼ x/q as x → ∞, for each residue class b mod q.
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most o(x) exceptions, as x → ∞.) Hence neither φ(n) nor σ(n) is equidistributed modulo
any given q > 1. Motivated by this, Narkiewicz in [25] introduces the notion of weak uniform
distribution: Given an integer-valued arithmetic function f and a positive integer q, we say
that f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if there are
infinitely many positive integers n for which gcd(f(n), q) = 1, and if

(3) #{n ≤ x : f(n) ≡ a (mod q)} ∼ 1

φ(q)
#{n ≤ x : gcd(f(n), q) = 1}, as x→ ∞,

for each coprime residue class a mod q.

In [25, Theorem I], Narkiewicz gives a general criterion for deciding weak equidistribution in
a large class of a multiplicative functions. An application of this criterion allows us to deduce
that σ(n) is weakly equidistributed mod q for any q coprime to 6. This was improved to a

complete characterization by Śliwa [39] (see also [27, Proposition 7.9, p. 106]), who showed
that σ(n) is weakly equidistributed precisely modulo those fixed q that are not multiples of
6. It still remains a highly nontrivial problem to explicitly characterize for a given f , the set
of q for which f is weakly equidistributed mod q; Narkiewicz’s monograph [27, Chapter VI]
contains an algorithmic solution to this problem in certain special cases.

In all these results, the modulus q was assumed to be fixed. A natural and interesting question
is whether weak equidistribution continues to hold as q varies uniformly in a suitable range
depending on the stopping point x of inputs. In other words, we seek analogues of the Siegel–
Walfisz theorem for primes in arithmetic progressions, but with primes replaced by values of
multiplicative functions. To this end, we say that an integer-valued arithmetic function f(n)
is weakly equidistributed (or WUD) mod q, uniformly for q ≤ (log x)K , if:

(i) For every such q, there are infinitely many n for which f(n) is coprime to q, and

(ii) The relation (3) holds uniformly in moduli q ≤ (log x)K and in coprime residue classes
a mod q. Explicitly, this means that for any ϵ > 0, there exists X(ϵ) > 0 such that
the ratio of the left hand side of (3) to the right lies in (1− ϵ, 1 + ϵ) for all x > X(ϵ),
q ≤ (log x)K and coprime residues a mod q.

The weak equidistribution of certain classes of arithmetic functions to uniformly varying moduli
appears to have been first investigated in [22, 31, 32] via combinatorial methods. A general
theorem in [32] shows that σ(n) is weakly equidistributed uniformly to moduli q ≤ (log x)K

coprime to 6. However, the methods in [32] are unable to address the case when our varying q

is odd but divisible by 3 as well as the case when q is even but not divisible by 3 (while Śliwa is
able to show that σ(n) is weakly equdistributed modulo any such fixed q). In addition, neither
these combinatorial methods nor any mean value results from other papers mentioned so far
are able to say anything useful regarding how often σ(n) lands in a given coprime residue class
mod q in our desired range of q, since they either give extremely weak error terms, or miss
crucial power savings in certain naturally-arising character sums, or give rise to additional error
terms that are so rapidly growing in q that they severely impede uniformity in q. As such,
all this prior work is still significantly far away from a suitable analogue of the Siegel–Walfisz
theorem for σ(n).

Our next three theorems address these defects and also reveal some surprising phenomena for
even moduli. As applications of Theorem 1.1 and the methods used to prove it, we are (for the
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first time) able to detect the crucial power savings missed before and obtain essentially best
possible qualitative and quantitative analogues of the Siegel–Walfisz theorem, thus extending
Śliwa’s results as well: We give sharp asymptotics (with error terms that can be expected to
be essentially of the correct orders of magnitude) for how often σ(n) takes values from a given
coprime residue class mod q, where q also varies in a wide range and satisfies optimal arithmetic
restrictions. Related counting problems for σ(n), φ(n), the sum-of-aliquot-divisors” function
s(n) := σ(n)− n and the “cototient function” β(n) = n− φ(n) have also been investigated in
[9, 5, 2, 1, 22, 33, 11, 28, 21].

We first state the promised result for odd q. In what follows, we set

α(q) :=
1

φ(q)
#{v mod q : gcd(v(v + 1), q) = 1} =

∏
ℓ|q

(
1− 1

ℓ− 1

)
,

the last equality being true by the Chinese Remainder Theorem. Here, the expression v + 1
arises from the polynomial T + 1 that controls the behavior of σ(n) at the primes.

Theorem 1.2. Fix K > 0 and ϵ ∈ (0, 1). We have

#{n ≤ x : σ(n) ≡ a (mod q)}

=
1

φ(q)
#{n ≤ x : gcd(σ(n), q) = 1}+OK,ϵ

(
x

φ(q)(log x)1−α(q)(1/3+ϵ)

)
,

uniformly in odd moduli q ≤ (log x)K and coprime residue classes a mod q. As a consequence,
σ(n) is weakly equidistributed mod q, uniformly for odd moduli q ≤ (log x)K.

To extend Śliwa’s results and obtain a complete analogue of the Siegel–Walfisz theorem for
σ(n), we still need to address the case when the modulus q is even. Here there are two new
difficulties that arise. First, the set of relevant inputs n ≤ x is highly sparse. In fact, elementary
number theory shows that if σ(n) is odd, then n must be of the form 2km2 for some odd m,
so that there are O(x1/2) many n ≤ x which have σ(n) coprime to a given even modulus q.
Sparse sets like this can often present difficulties while studying arithmetic questions about
them. However, we can work around this sparsity issue by looking at the behaviour of σ(n) at
the squares of primes.

Another crucial difficulty is that for even q, inputs n with too few large prime factors present
obstructions to uniformity in q ≤ (log x)K . In order to restore this uniformity, it becomes
necessary to restrict the set of n to those having sufficiently many prime factors exceeding
q. To make this precise, we write P (n) or P+(n) for the largest prime divisor of n, setting
P (1) = 1. With P1(n) := P (n), we inductively define Pk(n) := Pk−1(n/P (n)). Thus, Pk(n) is
the kth largest prime factor of n (counted with multiplicity), with Pk(n) = 1 if Ω(n) < k.

In what follows, we set

α̃(q) :=
1

φ(q)
#{v mod q : gcd(v(v2 + v + 1), q) = 1} =

∏
ℓ|q

ℓ≡1 (mod 3)

(
1− 2

ℓ− 1

)
,
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the last equality being true by the Chinese Remainder Theorem and the law of quadratic
reciprocity. Here, the expression v2+v+1 arises from the polynomial T 2+T +1 that controls
the behavior of σ(n) at the squares of primes.

Theorem 1.3. Fix K > 0 and ϵ ∈ (0, 1). We have

(4) #{n ≤ x : P6(n) > q, σ(n) ≡ a (mod q)}

=
1

φ(q)
#{n ≤ x : P6(n) > q, gcd(σ(n), q) = 1}+OK,ϵ

(
x1/2

φ(q)(log x)1−α̃(q)(1/4+ϵ)

)
,

uniformly in even moduli q ≤ (log x)K not divisible by 3, and in coprime residues a mod q.
Hence as x→ ∞, we have in the same range of uniformity in q,

(5)

#{n ≤ x : P6(n) > q, σ(n) ≡ a (mod q)} ∼ 1

φ(q)
#{n ≤ x : P6(n) > q, gcd(σ(n), q) = 1}.

In subsection 6.1, we give an explicit counterexample showing that the restriction P6(n) > q
is optimal in the sense that it cannot be replaced by a condition of the form “Pk(n) > q” with
k < 6, while still retaining weak equidistribution among the corresponding set of n’s in the
same range of uniformity in q. In fact, we will show that uniformity fails to moduli q ≤ (log x)K

that are of the form 2Q2 for certain odd squarefree integers Q having several prime factors.
It is quite intriguing to note that the proof of Theorem 1.3 and the counterexample showing
the optimality of the condition P6(n) > q seem to have somewhat different roots: While the
proof relies heavily on certain character sum bounds modulo prime powers, the aforementioned
counterexample relies on an excess in the number of lifts of solutions to a bivariate polynomial
congruence from prime moduli to prime square moduli. These excess lifts in turn come from
the Fℓ-rational points of certain affine irreducible curves over the finite field Fℓ.

Now if we restrict our attention to squarefree moduli q, then it turns out that we can enlarge
the set of inputs n to those having four (as opposed to six) prime divisors exceeding q.

Theorem 1.4. Fix K > 0 and ϵ ∈ (0, 1). We have

(6) #{n ≤ x : P4(n) > q, σ(n) ≡ a (mod q)}

=
1

φ(q)
#{n ≤ x : P4(n) > q, gcd(σ(n), q) = 1}+OK,ϵ

(
x1/2

φ(q)(log x)1−α̃(q)(1/4+ϵ)

)
,

uniformly in squarefree even moduli q ≤ (log x)K not divisible by 3, and in coprime residue
classes a mod q. Hence as x→ ∞, we have in the same range of uniformity in q,

(7)

#{n ≤ x : P4(n) > q, σ(n) ≡ a (mod q)} ∼ 1

φ(q)
#{n ≤ x : P4(n) > q, gcd(σ(n), q) = 1}.

In subsection 7.1, we show that the restriction P4(n) > q is optimal for squarefree even q in the
same sense as in the previous result. Moreover, the error terms in Theorems 1.2 through 1.4
can be expected to be essentially best possible, as suggested by the following heuristic: In order
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to detect the congruence σ(n) ≡ a (mod q), the primary objects of study are the multiplicative
functions χ ◦ σ for nonprincipal Dirichlet characters χ mod q. With these functions playing
the role of “f” in Theorem 1.1, the role of the parameter “ϱ” is played by the averages

ρχ :=
1

φ(q)

∑
v mod q

gcd(v,q)=1

χ(v + 1)

(
resp. ηχ :=

1

φ(q)

∑
v mod q

gcd(v,q)=1

χ(v2 + v + 1)

)

in Theorem 1.2 (resp., Theorems 1.3 and 1.4). It turns out that the maximum values of the
real parts of ρχ (resp. ηχ) are precisely the constants “1/3” (resp. “1/4”) appearing in the
exponent of log x (in the error terms). In fact, these values are attained by characters χ of
conductor 15 (resp. conductors 5, 7, 13, 35), in the cases when q is divisible by the respective
conductors (see the remarks at the end of the proofs of Theorem 1.2 and Proposition 5.1).

We are not sure what to conjecture regarding the best possible range of uniformity in q in
Theorems 1.2 to 1.4. By modifying the arguments towards the end of the introduction in [22],
standard conjectures on shifted primes without large prime factors imply that, even if we were
to restrict to prime moduli q, we cannot replace (log x)K by L(x)1+δ for any δ > 0, where
L(x) = xlog log log x/ log log x.

We conclude this introductory section with two remarks. First, in order to deduce the weak
equidistribution of σ(n) from the respective quantitative statements in Theorems 1.2-1.4,
highly crude estimates on the main terms such as those obtained from Proposition 4.1 be-
low turn out to be sufficient. Nonetheless, more precise asymptotic formulas for the main
terms in these theorems can be readily deduced from Theorems A and B in work of Scourfield
[38].

Finally, as an immediate byproduct of our arguments, we can obtain sharp upper bounds on
the character sums

∑
n≤x χ(σ(n)), which (in cases of significance) appear to have the correct

orders of magnitude. Such sums are interesting in their own right as they have been ardently
studied by several authors: For instance, Balasuriya, Shparlinski and Sutantyo in [3] derive
upper bounds on very similar character sums involving the Euler totient function φ(n), and
while it is easy to see that their work also goes through for σ(n) replacing φ(n), the bounds
we obtain are much sharper in the range q ≤ (log x)K . Banks and Shparlinski ([4] and [5])
also study exponential sums involving σ(n) (see the remarks at the end of both these papers),
while Balasuriya, Luca, Banks and Shparlinski (see [2] and [1]) investigate exponential and
character sums for the sum-of-aliquot-divisors function s(n) =

∑
d|n : d̸=n d.

Notation and conventions: To us, the zero function is not multiplicative (thus, f(1) = 1
for any multiplicative function f). We denote the largest prime divisor of n by P+(n) or P (n),
the k-th largest prime divisor of n (counted with multiplicity) by Pk(n), and the least prime
divisor of n by P−(n). Throughout, the letters p and ℓ shall denote primes, and Uq the group
of units (or the multiplicative group) modulo q. When there is no danger of confusion, we
shall abbreviate “gcd(a, b)” to “(a, b)”. Implied constants in ≪ and O-notation are allowed to
depend on any parameters declared as “fixed”; other dependence will be noted explicitly (for
example, with subscripts). We write logk for the kth iterate of the natural logarithm.
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2. Uniform bounds on the partial sums of multiplicative functions: Proof of
Theorem 1.1

Our arguments for Theorems 1.1 and 1.2 begin similarly to those given for [30, Theorems
1.1 and 1.3], but we include the complete argument here in order to keep the exposition self-
contained. We first bound the contribution of the n ≤ x that are either z-smooth or have
a repeated prime factor exceeding y. Since |f(n)| ≤ 1, the contribution of the former n has
absolute value at most Ψ(x, z), while that of the latter n is bounded in absolute value by

∑
p>y

∑
n≤x
p2|n

1 ≤ x
∑
p>y

1

p2
≪ x

y
.

Both of these are absorbed in the expressions given in the claimed bounds.

Let
∑∗

n≤x f(n) denote the sum over the remaining n, namely those that have P+(n) > z and
no repeated prime factor exceeding y. Any n counted in this sum can be uniquely written in
the form mPj · · ·P1 for some j ≥ 1, where P1 = P+(n) > z and P+(m) ≤ y < Pj < · · · < P1.
As such f(n) = f(m)f(Pj) · · · f(P1) and∑∗

n≤x
f(n) =

∑
j≥1

∑
m≤x

P+(m)≤y

f(m)
∑

P1,...,Pj

P1>z, Pj ···P1≤x/m
y<Pj<···<P1

f(Pj) · · · f(P1)

=
∑
j≥1

∑
m≤x

P+(m)≤y

f(m)
∑

P2,...,Pj

Pj ···P2≤x/mz
y<Pj<···<P2

f(Pj) · · · f(P2)
∑

max{P2,z}<P1≤x/mP2···Pj

f(P1).

Here max{P2, z} is to be replaced by z in the case j = 1.

Employing (1) to estimate the innermost sum on P1, we find that

∑∗

n≤x
f(n) = ϱ

∑
j≥1

1

(j − 1)!

∑
m≤x

P+(m)≤y

f(m)
∑

z<P1≤x/myj−1

∑
P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P2) · · · f(Pj)

+O(MxE(y) log x),

(8)

where we have observed that the total size of the resulting error term incurred upon an appli-
cation of (1) is

≪MxE(y)
∑
j≥1

∑
m,P2,...,Pj

mP2···Pj≤x/z
P+(m)≤y<Pj<···<P2

1

mP2 · · ·Pj
≤MxE(y)

∑
n≤x/z

1

n
≪MxE(y) log x.
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Now for j ≥ 2 and each i ∈ {2, . . . , j}, estimate (1) shows that

∑
y<Pi≤x/mP1···Pi−1Pi+1···Pj

Pi<P1, r ̸=i =⇒ Pr ̸=Pi

f(Pi) =
∑

y<Pi≤x/mP1···Pi−1Pi+1···Pj

Pi<P1

f(Pi) +O(j)

= ϱ
∑

y<Pi≤x/mP1···Pi−1Pi+1···Pj

Pi<P1, r ̸=i =⇒ Pr ̸=Pi

1 +O

(
j +

Mx

mP1 · · ·Pi−1Pi+1 · · ·Pj
E(y)

)
.

(9)

For each j ≥ 2, we use this estimate for i ∈ {2, . . . , j} in order to successively remove the
f(P2), . . . , f(Pj) occurring in the main term of (8). To this end, we define

Ẽ := j
∑

P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1 +
MxE(y)
mP1

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1

P2 · · ·Pj−1

,

and write ∑
P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P2) · · · f(Pj) =
∑

P3,...,Pj∈(y,P1)
P3,...,Pj distinct
P3···Pj≤x/myP1

f(P3) · · · f(Pj)
∑

y<P2≤x/mP1P3···Pj

P2<P1, r ̸=2 =⇒ P2 ̸=Pr

f(P2)

= ϱ
∑

P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P3) · · · f(Pj) +O(Ẽ),

where in the last step we have noted that the error term resulting from the application of (9)

for i = 2 is, by relabelling, equal to Ẽ . Likewise, invoking (9) for i = 3, . . . , j, we obtain∑
P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

f(P2) · · · f(Pj) = ϱj−1
∑

P2,...,Pj∈(y,P1)
P2,...,Pj distinct
P2···Pj≤x/mP1

1 +O(jẼ).

Inserting this into (8) for each j ≥ 2 incurs a total error of size

≪
∑
j≥2

1

(j − 1)!

∑
m≤x

P+(m)≤y

∑
z<P1≤ x

myj−1

{
j2

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1 +
MxjE(y)
mP1

∑
P2,...,Pj−1∈(y,P1)
P2,...,Pj−1 distinct
P2···Pj−1≤x/myP1

1

P2 · · ·Pj−1

}

≪ (log x)2
∑
j≥2

∑
m,P1,...,Pj−1

mP1···Pj−1≤x/y
P1>z, P+(m)≤y<Pj−1<···<P1

1 + Mx(log x)E(y)
∑

m,P1,...,Pj−1

mP1···Pj−1≤x/y
P1>z, P+(m)≤y<Pj−1<···<P1

1

mP1 · · ·Pj−1

≪ (log x)2
∑
n≤x/y

1 + Mx(log x)E(y)
∑
n≤x/y

1

n
≪Mx(log x)2

(
E(y) + 1

y

)
.
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As a consequence, we obtain

∑∗

n≤x
f(n) = ϱ

∑
j≥1

ϱj−1

(j − 1)!

∑
m≤x

P+(m)≤y

f(m)
∑

P1,...,Pj

P1>z, P1···Pj≤x/m
P2···Pj∈(y,P1) distinct

1 +O

(
Mx(log x)2

(
E(y) + 1

y

))

=
∑
m≤x/z
P+(m)≤y

f(m)
∑
j≥1

∑
P1,...,Pj

P1>z, P1···Pj≤x/m
y<Pj<···<P1

ϱj + O

(
Mx(log x)2

(
E(y) + 1

y

))
.

(10)

At this point, we observe that every squarefree positive integer r ≤ x/m having P+(r) > z and
P−(r) > y can be uniquely written in the form Pj · · ·P1 with P1 > z and y < Pj < · · · < P1,
and in this case j = Ω(r). As such, the main term in the final expression in (10) is equal to

(11)
∑
m≤x/z
P+(m)≤y

f(m)
∑
r≤x/m

r squarefree
P+(r)>z, P−(r)>y

ϱΩ(r) .

Ignoring the condition P+(r) > z incurs a total error of size

≪
∑
m≤x/z
P+(m)≤y

∑
r≤x/m

P−(r)>y, P+(r)≤z

1 ≤
∑
n≤x

P+(n)≤z

1 ≤ Ψ(x, z),

which is absorbed in the bound claimed in the theorem statement. Moreover, since any non-
squarefree r having P−(r) > y is divisible by the square of a prime exceeding y, ignoring the
squarefreeness condition in (11) incurs a total error

≪
∑
m≤x/z
P+(m)≤y

∑
p>y

∑
r≤x/m
p2|r

1 ≪ x
∑
m≤x/z
P+(m)≤y

1

m

∑
p>y

1

p2
≪ x

y log y

∏
ℓ≤y

(
1 +

∑
v≥1

1

ℓv

)
≪ x

y
,

which is also absorbed in the claimed bound. Hence, up to a negligible error, the expression
in (11) is equal to

(12)
∑
m≤x/z
P+(m)≤y

f(m)
∑
r≤x/m

1P−(r)>y ϱ
Ω(r).

In order to estimate the innermost sum, we shall be making use of the lemma below, which
we will establish in the next section.

Lemma 2.1. Let X, Y, Z ≥ e11/2 be positive real numbers satisfying Y ≤ Z1/(18 log logZ)2 and
Z ≤ X. We have for all β ∈ U,∑
n≤X

1P−(n)>Y β
Ω(n) =

X

(logX)1−β

{
e−γβ

Γ(β)(log Y )β

(
1 +O(exp(−C0

√
log y))

)
+O

(
(log Y )1+|β|

logZ

)}
,
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where C0 > 0 is an absolute constant. In particular,∑
n≤X

1P−(n)>Y βΩ(n) ≪ X

(logX)1−Re(β)

{
|β|

(log Y )Re(β)
+

(log Y )1+|β|

logZ

}
.

The implied constants in the above estimates are absolute.

Applying the above lemma with X := x/m, Y := y, Z := z and β := ϱ, we find that the
expression in (12) is

≪
∑
m≤x/z
P+(m)≤y

|f(m)| · x/m

(log(x/m))1−Re(ϱ)

{
|ϱ|

(log y)Re(ϱ)
+

(log y)1+|ϱ|

log z

}

≪ x

(log z)1−Re(ϱ)

 ∑
m:P+(m)≤y

|f(m)|
m

{ |ϱ|
(log y)Re(ϱ)

+
(log y)1+|ϱ|

log z

}
.

Finally, since |f(n)| ≤ 1 for all n, the sum on m is ≪ exp(
∑

p≤y |f(p)|/p), yielding the estimate
in the theorem. This completes the proof of Theorem 1.1, up to the proof of Lemma 2.1.

3. Proof of Lemma 2.1: the Landau–Selberg–Delange method

A comprehensive account of the method of Landau–Selberg–Delange may be found in Tenen-
baum [40, Chapter II.5]. However, we shall be using a recent formulation of this method due
to Chang and Martin [6]. This is based on Tenenbaum’s treatment but is more explicit in the
dependence on certain parameters, a feature that shall be crucial in our current application.

3.1. Setup. In what follows, we write complex numbers s as s = σ + it, where σ := Re(s)
and t := Im(s). (This convention is relevant only for this section and the use of σ will not
create any confusion with the notation for the sum-of-divisors function.) For a non-negative
u, we use log+ u to denote the quantity max{0, log u} (the positive part of log u), with the
convention that log+ 0 = 0.

Given δ ∈ (0, 1], a complex number z, and positive real numbers c0 and M , we say that the
Dirichlet series F (s) has property P(z; c0, δ,M) if the function

G(s; z) := F (s)ζ(s)−z

satisfies the following two conditions:

(i) G(s; z) continues analytically into the region σ ≥ 1− c0/(1 + log+ |t|), and

(ii) |G(s; z)| ≤M(1 + |t|)1−δ for all s in this same region.

Given complex numbers z and w, along with positive numbers c0, M and δ ∈ (0, 1], we say
that a Dirichlet series F (s) :=

∑∞
n=1 ann

−s has type T (z, w; c0, δ,M) if:

(i) F (s) has property P(z; c0, δ,M), and

(ii) there is a sequence {bn}∞n=1 of nonnegative real numbers satisfying |an| ≤ bn for all n,
such that the Dirichlet series

∑∞
n=1 bnn

−s has property P(w; c0, δ,M).

The following is the special case of Theorem A.13 in [6] with N = 0.
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Proposition 3.1. Fix A ≥ 1 and let z, w be complex numbers satisfying |z|, |w| ≤ A. Let
c0, δ,M be positive real numbers with c0 ≤ 2/11 and δ ≤ 1. Let F (s) =

∑∞
n=1 an/n

s be a Dirich-
let series of type T (z, w; c0, δ,M). Then, uniformly for x ≥ exp(81/Amax{δ−1−1/A, 2/c0}), we
have ∑

n≤x

an =
x

(log x)1−z

(
G(1; z)

Γ(z)
+O(MR(x))

)
,

where

R(x) =

(
1

δ2A+3/2
+

1

c2A+1
0

)
exp

(
−1

6

√
c0δ log x

)
+

1

c0 log x

and the implied constant depends at most on A.

Here we have corrected some typos in [6]; the expression for R(x) there has an extra factor of
M throughout as well as an extra factor of x in its first term.

3.2. Proof of Lemma 2.1. We claim that the Dirichlet series F (s) :=
∑

n≥1 1P−(n)>Y β
Ω(n)/ns

is of type T (β, |β|; 1/ log Y, 1, C0(log Y )|β|) for some absolute constant C0 > 0. Indeed, in the
half plane σ > 1, we find that

(13) G(s) := F (s)ζ(s)−β =
∏
p≤Y

(
1− 1

ps

)β ∏
p>Y

(
1− 1

ps

)β (
1− β

ps

)−1

,

and in the same half plane

(14) logG(s) = β
∑
p≤Y

log

(
1− 1

ps

)
+
∑
p>Y

{
β log

(
1− 1

ps

)
− log

(
1− β

ps

)}
.

Now since Y ≥ e11/2, we see that if σ ≥ 1−1/ log Y , then σ ≥ 9/11, so that |β/ps| ≤ 2−σ ≤ 0.57.
Consequently for all such s, the second sum in (14) is∑

p>Y

{
β

(
− 1

ps
+O

(
1

p2σ

))
+

(
β

ps
+O

(
1

p2σ

))}
≪
∑
p>Y

1

p2σ
≤
∑
p>Y

1

p18/11
≪ 1.

This shows that the second sum in (14) converges absolutely and uniformly in the half plane
σ ≥ 1 − 1/ log Y , thus defining a holomorphic function in the same region. Furthermore, for
all s in this half plane, we have

log |G(s)| ≤ | logG(s)| ≤ |β|
∑
p≤Y

1

pσ
+O(1) ≤ |β|

∑
p≤Y

1

p
exp

(
log p

log Y

)
+O(1)

= |β|
∑
p≤Y

1

p
+O

(
1 +

1

log Y

∑
p≤Y

log p

p

)
= |β| log2 Y +O(1).

We deduce that |G(s)| ≤ C0(log Y )|β| for all σ ≥ 1 − 1/ log Y , which shows that F (s) has
property P(β; 1/ log Y, 1, C0(log Y )|β|). By invoking this very observation with |β| in place of
β, we find that the Dirichlet series

∑
n≥1 |β|Ω(n)/ns has property P(|β|; 1/ log Y, 1, C0(log Y )|β|),

which establishes our claim.
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An application of Proposition 3.1 with A = 1 now shows that for all X ≥ Y 16 = exp(16 log Y ),
we have∑
n≤X

1P−(n)>Y β
Ω(n) =

X

(logX)1−β

{
G(1)

Γ(β)
+O

(
(log Y )1+|β|

logX
+ (log Y )3+|β| exp

(
−1

6

√
logX

log Y

))}
.

For Y ≤ Z1/(18 log2 Z)
2
, we have 2 log2 Y + log2 Z ≤ 3 log2 Z ≤ 1

6

√
logZ
log Y

, which shows that

(15)
∑
n≤X

1P−(n)>Y β
Ω(n) =

X

(logX)1−β

{
G(1)

Γ(β)
+O

(
(log Y )1+|β|

logZ

)}
.

Finally, ∑
p>Y

{
β log

(
1− 1

p

)
− log

(
1− β

p

)}
≪
∑
p>Y

1

p2
≪ 1

Y log Y
,

and by the prime number theorem (with the usual de la Vallée Poussin error term), we have∏
p≤Y

(
1− 1

p

)β
=

e−γβ

(log Y )β

(
1 +O(exp(−C0

√
log Y ))

)
,

for some absolute constant C0 > 0. This shows that

G(1) =
∏
p≤Y

(
1− 1

p

)β ∏
p>Y

(
1− 1

p

)β (
1− β

p

)−1

=
e−γβ

(log Y )β

(
1 +O(exp(−C0

√
log Y ))

)
which from (15) yields the first of the claimed estimates in Lemma 2.1. Since the Gamma
function has no zeros in the complex plane, we have |Γ(s)| ≫ 1 for all s in a fixed compact
region. As a consequence, βΓ(β) = Γ(1 + β) ≫ 1 for all |β| ≤ 1, yielding the second assertion
of the lemma.

4. Distribution of the sum-of-divisors to odd moduli: Proof of Theorem 1.2

In the rest of this section, we abbreviate α(q) to α. We shall make frequent use of the fact

that α =
∏

ℓ|q(1 − 1/(ℓ − 1)) ≫ exp
(
−
∑

ℓ≤q 1/ℓ
)
≫ 1/ log2(3q) for all odd q. The following

proposition allows us to give a rough estimate on the count of n ≤ x for which σ(n) is coprime
to q, uniformly in odd moduli q ≤ (log x)K .

Proposition 4.1. Fix K > 0 and a multiplicative function f for which there exists a non-
constant polynomial F ∈ Z[T ] satisfying f(p) = F (p) for all primes p. If x is sufficiently large
and q ≤ (log x)K with αF (q) :=

1
φ(q)

#{u mod q : (uF (u), q) = 1} > 0, then

(16) #{n ≤ x : (f(n), q) = 1} =
x

(log x)1−αF (q)
exp(O((log log (3q))O(1))).

This is Proposition 2.1 in [32]; more precise results appear in work of Scourfield [37, 38]. By
the above proposition, we obtain

(17) #{n ≤ x : (σ(n), q) = 1} =
x

(log x)1−α
exp(O((log log (3q))O(1))),
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uniformly in odd q ≤ (log x)K . Since α ≫ 1/ log2(3q), this shows that the second of the two
assertions of Theorem 1.2 is an immediate consequence of the first, so we need to show the
first assertion of the theorem. For this purpose, we shall also need the following estimate [32,
Lemma 2.4] on the sum of reciprocals of the primes at which a given polynomial is coprime to
a modulus q that varies in a wide range.

Lemma 4.2. Let F (T ) ∈ Z[T ] be a fixed nonconstant polynomial. For each positive integer q
and each real number x ≥ 3q,∑

p≤x

1gcd(F (p),q)=1

p
= αF (q) log2 x+O((log log (3q))O(1)),

where αF (q) is as defined in Proposition 4.1.

To establish the first assertion of Theorem 1.2, we set y := exp((log x)ϵ/2) and z := x1/ log2 x.
From the count of n ≤ x having σ(n) ≡ a (mod q), we first eliminate those that are either
z-smooth or are divisible by the square of a prime exceeding y. By well-known results on
smooth numbers (for instance [40, Theorem 5.13 and Corollary 5.19, Chapter III.5]), the total
contribution of the former n is at most Ψ(x, z) ≪ x/(log x)(1+o(1)) log3 x. On the other hand,
the total contribution of the latter n is ≪ x/y. Both of these contributions are negligible in
comparison to the error term in the statement of Theorem 1.2.

Among the surviving n, we now remove those that have P2(n) ≤ y. Any such n can be written
as n = mP , where P = P (n) > z, m is y-smooth and σ(n) = σ(m)σ(P ) = σ(m)(P +1). Since
σ(n) ≡ a (mod q), it follows that σ(m) must be coprime to q; moreover, for each choice of m,
this congruence forces P ∈ (z, x/m] into at most one coprime residue class modulo q. Hence
for each choice of m, there are ≪ x/φ(q)m log(z/q) ≪ x log2 x/φ(q)m log x many possible
choices of P , by the Brun-Titchmarsh theorem. Thus, the total contribution of the n ≤ x
having P2(n) ≤ y that survived the filtering in the previous paragraph is

≪ x log2 x

φ(q) log x

∑
m:P+(m)≤y

1(σ(m),q)=1

m
≪ x log2 x

φ(q) log x
exp

(∑
p≤y

1(p+1, q)=1

p

)

≪ x log2 x

φ(q)(log x)1−αϵ/2
exp((log2(3q))

O(1)) ≪ x

φ(q)(log x)1−2αϵ/3
.

Here we have estimated the sum
∑

p≤y 1(p+1, q)=1/p using Lemma 4.2 (on the polynomial

F (T ) := T + 1) and recalled that α ≫ 1/ log2(3q) ≫ 1/ log3 x for all odd q ≤ (log x)K .
Collecting estimates, we have so far shown that∑

n≤x
σ(n)≡a (mod q)

1 =
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

1σ(n)≡a (mod q) +O

(
x

φ(q)(log x)1−2αϵ/3

)

=
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

1

φ(q)

∑
χ mod q

χ(a)χ(σ(n)) +O

(
x

φ(q)(log x)1−2αϵ/3

)
,
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where in the second line above, we have used the orthogonality of the Dirichlet characters
mod q to detect the congruence σ(n) ≡ a (mod q). With χ0,q denoting the principal character
modulo q, we may thus isolate the contribution of χ0,q to obtain

∑
n≤x

σ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x

(σ(n),q)=1

1

+
1

φ(q)

∑
χ ̸=χ0,q mod q

χ(a)
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(σ(n)) +O

(
x

φ(q)(log x)1−2αϵ/3

)
.

(18)

The second outer sum on the right hand side above is over the nontrivial characters χ mod
q, and we have adapted our previous arguments to observe that there are O(x/(log x)1−2αϵ/3)
many n ≤ x satisfying (σ(n), q) = 1 but failing at least one of the three conditions below:

(i) P (n) > z,

(ii) p > y =⇒ p2 ∤ n,

(iii) P2(n) > y.

Indeed, if n satisfies conditions (i) and (ii) but fails (iii), then n is of the form mP , where
P = P (n) ∈ (z, x/m], P (m) ≤ y and σ(n) = σ(m)(P + 1). Consequently, σ(m) must be
coprime to q, and the number of P given m is ≪ x/m log z ≪ x log2 x/m log x. Summing this
expression over all possible m yields the observed bound.

In order to estimate the inner sums of χ(σ(n)) occurring in (18), we start by modifying some
of our initial arguments in the proof of Theorem 1.1. Any n with P (n) > z, P2(n) > y and
without any repeated prime factor exceeding y can be uniquely written in the form mPj · · ·P1

for some j ≥ 2, where P1 = P (n) > z and P (m) ≤ y < Pj < · · · < P1. As such, we have∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(σ(n)) =
∑
j≥2

∑
m≤x

P (m)≤y

χ(σ(m))
∑

P1,...,Pj

Pj ···P1≤x/m
P1>z, y<Pj<···<P1

χ(P1 + 1) · · ·χ(Pj + 1).

Define ρχ := 1
φ(q)

∑
v mod q χ0,q(v)χ(v + 1). By the Siegel-Walfisz Theorem, we see that∑

y<p≤Y

χ(p+ 1) =
∑

v mod q
(v,q)=1

χ(v + 1)
∑

y<p≤Y
p≡v (mod q)

1

=
∑

v mod q
(v,q)=1

χ(v + 1)

{
1

φ(q)

∑
y<p≤Y

1 +O
(
Y exp(−C0

√
log y)

)}

= ρχ(π(Y )− π(y)) +O(φ(q)Y exp(−C0

√
log y)),

(19)

where C0 is a constant depending at most onK. As in the proof of Theorem 1.1, we successively
remove χ(P1+1), . . . , χ(Pj +1), with the input from (1) replaced by the above estimate. This
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leads us to ∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(σ(n)) =
∑
j≥2

(ρχ)
j

(j − 1)!

∑
m≤x

P (m)≤y

χ(σ(m))
∑

P1,...,Pj

P1>z, Pj ···P1≤x/m
P2,...,Pj∈(y,P1) distinct

1

+O(x exp(−C1

√
log y)),

(20)

for some constant C1 > 0 depending at most on K.

Now the main term in the display above is absolutely bounded by

|ρχ|2
∑
j≥2

|ρχ|j−2

(j − 1)!

∑
m≤x

P (m)≤y
(σ(m),q)=1

∑
P2,...,Pj∈(y,x)
P2···Pj≤x/mz

∑
z<P1≤x/mP2···Pj

1

(21)

≪ |ρχ|2x
log z

∑
j≥2

|ρχ|j−2

(j − 1)!

∑
m≤x

P (m)≤y
(σ(m),q)=1

1

m

∑
P2,...,Pj∈(y,x)

1

P2 · · ·Pj

≪ |ρχ|2
x(log2 x)

2

log x

∑
j≥2

(|ρχ| log2 x)j−2

(j − 2)!

∑
m≤x

P (m)≤y
(σ(m),q)=1

1

m
≪ |ρχ|2

x(log2 x)
2

(log x)1−|ρχ|
exp

( ∑
p≤y

(p+1, q)=1

1

p

)
.

Invoking Lemma 4.2 to estimate the last sum in the above display, we obtain

(22)
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(σ(n)) ≪ |ρχ|2
x

(log x)1−|ρχ|−2αϵ/3
+ x exp(−C1

√
log y).

In order to be able to make use of this bound, we need to estimate the |ρχ|. To this end, given
a nontrivial character χ mod q we let f(χ) denote its conductor, so that f(χ) | q and f(χ) > 1.
We can write χ uniquely in the form

∏
ℓe∥q χℓ, with χℓ denoting a character mod ℓe that is

nontrivial precisely when ℓ | f(χ). Note that φ(q)ρχ =
∏

ℓe∥q Sχ,ℓ, where for each prime power

ℓe ∥ q,

(23) Sχ,ℓ :=
∑

v mod ℓe

χ0,ℓ(v)χℓ(v + 1) =
∑

v mod ℓe
(v,ℓ)=1

χℓ(v + 1) =
∑

u mod ℓe

χℓ(u)−
∑

u mod ℓe
u≡1 (mod ℓ)

χℓ(u).

Here χ0,ℓ denotes the principal character mod ℓe and we have noted that as v runs over all the
coprime residues mod ℓe, the expression v+1 runs over all the residues mod ℓe except for those
congruent to 1 mod ℓ. The first sum above is 1χℓ=χ0,ℓ

φ(ℓe). To evaluate the second sum, we
consider a primitive root g mod ℓe (which exists as ℓ is odd), and observe that the residues
{u mod ℓe : u ≡ 1 (mod ℓ)} are a permutation of the residues {g(ℓ−1)k mod ℓe : 0 ≤ k < ℓe−1}.
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Hence

(24)
∑

u mod ℓe
u≡1 (mod ℓ)

χℓ(u) =
∑

0≤k<ℓe−1

χℓ(g
ℓ−1)k = 1(χℓ)ℓ−1=χ0,ℓ

ℓe−1 = 1f(χℓ)|ℓ ℓ
e−1,

with f(χℓ) denoting the conductor of χℓ. Putting these observations together, we find that

Sχ,ℓ = 1χℓ=χ0,ℓ
φ(ℓe)− 1f(χℓ)|ℓ ℓ

e−1 = 1f(χℓ)|ℓ ℓ
e−1
(
1ℓ∤f(χ) (ℓ− 1)− 1

)
,

leading to

(25) ρχ =
∏
ℓe∥q

Sχ,ℓ
φ(ℓe)

= 1f(χ) squarefree

∏
ℓe∥q

(
1ℓ∤f(χ) −

1

ℓ− 1

)
= 1f(χ) squarefree

(−1)ω(f(χ))α∏
ℓ|f(χ)(ℓ− 2)

.

If 3 | q, let ψ denote the unique character mod q induced by the nontrivial character mod 3.
Then any nonprincipal character χ ̸= ψ mod q for which ρχ ̸= 0 has conductor f(χ) divisible
by a prime at least 5, so that |ρχ| ≤ α/3 by (25). Consequently, (22) yields for all such χ,

(26)
∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

χ(σ(n)) ≪ |ρχ|2
x

(log x)1−(1/3+2ϵ/3)α
+ x exp(−C1

√
log y).

Since there are exactly
∏

ℓ|d(ℓ−2) primitive characters modulo any squarefree integer d, equa-

tion (25) yields∑
χ mod q

|ρχ|2 ≤ α2
∑
d|q

d squarefree

1∏
ℓ|d(ℓ− 2)2

∑
χ mod q
f(χ)=d

1 ≤ α2
∑
d|q

d squarefree

1∏
ℓ|d(ℓ− 2)

≤ α2
∏
ℓ|q

ℓ− 1

ℓ− 2
= α.

(This may be compared with the bound placed on the averages 1
φ(q)

∑
v mod q χ0,q(v)χ(v− 1) in

the proof of the analogous Theorem 1.3 in [30].)

Summing (26) over all nontrivial characters χ ̸= ψ mod q, and plugging the resulting bound
into (18), we obtain

∑
n≤x

σ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x

(σ(n),q)=1

1 +
13|qψ(a)

φ(q)

∑
n≤x

P (n)>z, P2(n)>y
p>y =⇒ p2∤n

ψ(σ(n)) +O

(
x

φ(q)(log x)1−α(1/3+ϵ)

)

=
1

φ(q)

∑
n≤x

(σ(n),q)=1

1 +
13|qψ(a)

φ(q)

∑
n≤x

ψ(σ(n)) +O

(
x

φ(q)(log x)1−α(1/3+ϵ)

)
.

(27)

Here in passing to the second line above, we have recalled our previous bound on the count
of n ≤ x having σ(n) coprime to q but failing one of the conditions (i)–(iii) in the discussion
following (18).

Note that the last equality in (27) already establishes the first assertion of the theorem for
moduli q coprime to 6. To complete the proof of the theorem, it thus remains to only consider
the odd moduli q divisible by 3 and deal with the sum of ψ(σ(n)) occurring in (27). This is
where we can directly apply Theorem 1.1. Indeed, since 3 | q, we find that a prime p satisfies
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(p+1, q) = 1 only if p = 3 or p ≡ 1 (mod 3). Thus for all p > 3, we have ψ(σ(p)) = ψ(p+1) =
−1(p+1, q)=1. A straightforward calculation (analogous to (19)) by means of the Siegel-Walfisz
theorem shows that the multiplicative function f(n) := ψ(σ(n)) satisfies the hypothesis (1)
with y, z as chosen in the beginning of the section and with ϱ := − 1

φ(q)

∑
v mod q

(v(v+1),q)=1

1 = −α,

M := φ(q), E(y) := exp(−C0

√
log y) (for some absolute constant C0 > 0). Since by lemma

(4.2),
∑

p≤y |f(p)|/p = α log2 y +O((log2(3q))
O(1)), we deduce that∑

n≤x

ψ(σ(n)) ≪ x(log2 x)
1+α

(log x)1+α(1−ϵ)
exp((log2(3q))

O(1)) ≪ x

log x
,

and substituting this into (27) completes the proof of the theorem.

Remark. To substantiate our comment (made after the paragraph following the statement of
Theorem 1.4) on the suggested optimality of the exponent 1/3 in the error term of Theorem
1.2, note that by (25), we have ρχ = α/3 for f(χ) = 15 (in the case when 15 | q).

5. Technical Preparation for Theorems 1.3 and 1.4

In order to establish Theorems 1.3 and 1.4, we will need to study the averages

ηχ := ηχ(q) :=
1

φ(q)

∑
v mod q

χ0,q(v)χ(v
2 + v + 1)

which will play the roles of the averages ρχ that came up in the previous section. The following
proposition will provide the key information on these averages that will prove to be crucial in
our arguments.

Proposition 5.1. There exists a set S of eighteen (fixed) squarefree positive integers coprime
to 6 such that for all sufficiently large integers q and all nonprincipal characters χ mod q, the
following two properties hold true:

(i) If f(χ) ̸∈ S, then |ηχ| ≤ α̃(q)/4.

(ii) If f(χ) ∈ S, then Re(ηχ) ≤ α̃(q)/4.

In particular, we have Re(ηχ) ≤ α̃(q)/4 for all nontrivial characters χ mod q, and |ηχ| ≤ α̃(q)/4
for all but a bounded number of characters χ mod q.

The following character sum bound, a special case of [7, Theoem 1.1], will be useful to give a
proof of Proposition 5.1.

Lemma 5.2. Let ℓ be a prime at least 5. Then for any integer e ≥ 2 and any primitive
character χ mod ℓe, we have ∣∣∣∣∣ ∑

v mod ℓe

χ(v2 + v + 1)

∣∣∣∣∣ ≤ ℓe/2.
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Proof of Proposition 5.1. We start by factoring χ =:
∏

ℓe∥q χℓ, where each χℓ is as usual a

character mod ℓe. This allows us to factor ηχ as
∏

ℓe∥q ηχ,ℓ, where

ηχ,ℓ :=
1

φ(ℓe)

∑
v mod ℓe

χ0,ℓ(v)χℓ(v
2 + v + 1).

Since α̃(ℓe) = 1
φ(ℓe)

#{v mod ℓe : (v(v2 + v + 1), ℓ) = 1}, it is immediate that |ηχ,ℓ| ≤ α̃(ℓe) =

α̃(ℓ). Moreover, letting eℓ := vℓ(f(χ)) denote the exponent of the prime ℓ in the integer f(χ),
we see that f(χℓ) = ℓeℓ , so if eℓ = 0 (i.e., ℓ ∤ f(χ)), then χℓ = χ0,ℓ and ηχ,ℓ = α̃(ℓ).

Assume that χ2 is nontrivial, so that e2 ≥ 2. Letting U2e2 denote the multiplicative group mod
2e2 we observe that the map U2e2 → U2e2 : v 7→ v2 + v+1, being injective, is also bijective. As
a consequence

ηχ,2 =
1

φ(2e2)

∑
v mod 2e2
(v,2)=1

χ2(v
2 + v + 1) =

1

φ(2e2)

∑
u mod 2e2
(u,2)=1

χ2(u) = 0,

leading to ηχ = ηχ,2
∏

ℓ|q: ℓ>2 ηχ,ℓ = 0. Hence in the rest of the argument, it suffices to consider

only those characters χ mod q for which χ2 is trivial, that is, for which f(χ) is not a multiple
of 4. Since 3 ∤ q and χ is nontrivial mod q, it must then be the case that χℓ ̸= χ0,ℓ for some
prime ℓ ≥ 5 dividing q.

Consider a prime ℓ ≥ 5 dividing q for which χℓ is nontrivial. Letting χℓ also denote the
primitive chraracter mod ℓeℓ that induces χℓ mod ℓe, we find that

ηχ,ℓ =
1

φ(ℓe)
· ℓe−eℓ

∑
v mod ℓeℓ

χ0,ℓ(v)χℓ(v
2 + v + 1) =

1

φ(ℓeℓ)

∑
v mod ℓeℓ

χ0,ℓ(v)χℓ(v
2 + v + 1)(28)

=
1

φ(ℓeℓ)


∑

v mod ℓeℓ

χℓ(v
2 + v + 1)−

∑
v mod ℓeℓ
v≡0 (mod ℓ)

χℓ(v
2 + v + 1)


=

1

φ(ℓeℓ)

{ ∑
v mod ℓeℓ

χℓ(v
2 + v + 1)− 1eℓ=1

}
.

In the last equality above, we have observed that the map {v mod ℓeℓ : v ≡ 0 (mod ℓ)} →
{u mod ℓeℓ : u ≡ 1 (mod ℓ)} : v 7→ v2 + v+1 being an injection from one set to another of the
same cardinality is also a bijection. By (24), this led to∑

v mod ℓeℓ
v≡0 (mod ℓ)

χℓ(v
2 + v + 1) =

∑
u mod ℓeℓ
u≡1 (mod ℓ)

χℓ(u) = 1eℓ=1 ℓ
eℓ−1 = 1eℓ=1.

If ℓ ≥ 5 and eℓ ≥ 2, then by Lemma 5.2, we have

(29) |ηχ,ℓ| =
1

φ(ℓeℓ)

∣∣∣∣∣ ∑
v mod ℓeℓ

χℓ(v
2 + v + 1)

∣∣∣∣∣ ≤ ℓeℓ/2

φ(ℓeℓ)
≤ ℓ1−eℓ/2

ℓ− 1
.
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Hence if vℓ(f(χ)) = eℓ ≥ 2 for some prime ℓ ≥ 5 dividing q, then

|ηχ|
α̃(q)

≤ |ηχ,ℓ|
α̃(ℓ)

≤ ℓ1−eℓ/2

ℓ− 1
·
(
ℓ− 1

ℓ− 3

)
1ℓ≡1 (mod 3)

≤ 1

4
.

This shows that |ηχ| ≤ α̃(q)/4 for all characters χ mod q whose conductor is not squarefree.

Consider now a nontrivial character χ mod q whose conductor is squarefree. Then by (28) and
the Weil bounds (see for instance, [42, Corollary 2.3]), we find that

(30) |ηχ,ℓ| =
1

φ(ℓ)

∣∣∣∣∣ ∑
v mod ℓ

χℓ(v
2 + v + 1)− 1

∣∣∣∣∣ ≤ ℓ1/2 + 1

ℓ− 1
.

Applying this bound for each prime ℓ ≥ 5 dividing q, we find that

|ηχ|
α̃(q)

≤
∏
ℓ|q
ℓ>2

µℓ, where µℓ := 1ℓ≡1 (mod 3)

(
ℓ1/2 + 1

ℓ− 3

)
+ 1ℓ≥5, ℓ≡2 (mod 3)

(
ℓ1/2 + 1

ℓ− 1

)
.

Note that µℓ ∈ (0, 1) for all primes ℓ ≥ 5. Since the functions (ℓ1/2 + 1)/(ℓ − 3) and (ℓ1/2 +
1)/(ℓ−1) are both strictly decreasing, we observe the following cases in which |ηχ|/α̃(q) ≤ 1/4.
For i ∈ {1, 2}, we let ωi(r) denote the number of distinct primes dividing an integer r that are
congruent to i mod 3.

• If P+(f(χ)) ≥ 29, then |ηχ|/α̃(q) ≤ 291/2+1
29−3

< 0.246.

• If ω(f(χ)) ≥ 4, then one of the following three possibilities must hold:
(i) Either ω1(f(χ)) ≥ 3, in which case |ηχ|/α̃ ≤ µ7µ13µ19 < 0.141, OR
(ii) ω2(f(χ)) ≥ 3, in which case |ηχ|/α̃ ≤ µ5µ11µ17 < 0.112, OR
(iii) ω1(f(χ)) = ω2(f(χ)) = 2, in which case |ηχ|/α̃ ≤ µ7µ13 · µ5µ11 < 0.147.

• If ω(f(χ)) = 3 but f(χ) does not lie in the set A0 := {5 · 7 · 11, 5 · 7 · 13}, then
|ηχ|/α̃ ≤ max{µ5µ11µ13, µ5µ7µ17, µ7µ11µ13, µ5µ7µ19} < 0.247.

• If ω(f(χ)) = 2 but f(χ) is not a member of the set B0 := {7 · 13, 7 · 19}∪{5 · 11, 5 · 17}∪
{5 · 7, 5 · 13, 5 · 19, 7 · 11, 7 · 17}, then

|ηχ|/α̃ ≤ max{µ13µ19, µ11µ17, µ5µ23, µ7µ23, µ11µ13} < 0.241.

Hence, defining S to be the set {5, 7, 11, 13, 17, 19, 23} ∪ A0 ∪ B0, we have shown that |ηχ| ≤
α̃(q)/4 for all characters χ mod q whose conductor f(χ) does not lie in the set S. It thus only
remains to show that for all χ mod q with f(χ) ∈ S, we have Re(ηχ) ≤ α̃(q)/4. For such
characters, the identity (28) shows that

ηχ =
∏
ℓ|q
ℓ∤f(χ)

α̃(ℓ) ·
∏
ℓ|f(χ)

 1

φ(ℓ)

∑
v mod ℓ
v ̸≡0 mod ℓ

χℓ(v
2 + v + 1)


=

α̃(q)∏
ℓ|f(χ)

ℓ≡1 (mod 3)

(ℓ− 3) ·
∏

ℓ|f(χ)
ℓ≡2 (mod 3)

(ℓ− 1)

∑
v mod f(χ)

gcd(v,f(χ))=1

ψ(v2 + v + 1),

(31)
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where ψ :=
∏

ℓ|f(χ) χℓ denotes the primitive character mod f(χ) inducing χ. So we need only
show that
(32)

max
Q∈S

1∏
ℓ|Q

ℓ≡1 (mod 3)

(ℓ− 3) ·
∏

ℓ|Q
ℓ≡2 (mod 3)

(ℓ− 1)
max

ψ mod Q
ψ primitive

Re

 ∑
v mod Q

gcd(v,Q)=1

ψ(v2 + v + 1)

 ≤ 1

4
.

But S consists of only eighteen moduli, so this can be verified by a short Sage code. This
completes the proof of Proposition 5.1. □

Remark. The aforementioned Sage code actually shows that equality is attained in (32) for
Q ∈ {5, 7, 13, 35} ⊂ S. In other words, for such Q, there exist primitive characters ψ mod Q
for which

1∏
ℓ|Q

ℓ≡1 (mod 3)

(ℓ− 3) ·
∏

ℓ|Q
ℓ≡2 (mod 3)

(ℓ− 1)
· Re

 ∑
v mod Q

gcd(v,Q)=1

ψ(v2 + v + 1)

 =
1

4
.

As we shall see in the proof of Proposition 5.4 below, the averages ηχ will play the roles of
the parameter ϱ from Theorem 1.1. This supports our previous comment on the expected
optimality of the “1/4” in the exponent of log x in the error terms of Theorems 1.3 and 1.4.

We shall also need the following analogue of Proposition 4.1, which gives a count for the main
term in Theorems 1.3 and 1.4. In what follows, we abbreviate α̃(q) to α̃. It will be important to

keep in mind that α̃ =
∏

ℓ|q
ℓ≡1 (mod 3)

(1− 2/(ℓ− 1)) ≫ exp

(
−2
∑

ℓ≤q
ℓ≡1 (mod 3)

1/ℓ

)
≫ 1/ log2(3q).

Lemma 5.3. Fix K > 0. We have

(33) #{n ≤ x : (σ(n), q) = 1} =
x1/2

(log x)1−α̃
exp(O((log log (3q))O(1))),

uniformly in even q ≤ (log x)K such that 3 ∤ q.

Proof. Our key observation is that since q is even, σ(n) is coprime to q if and only if n is of the
form 2km2 for some integer k ≥ 0 and some odd integer m satisfying gcd(σ(m2), q) = 1; this
follows from the fact that σ(n) =

∏
pk∥n σ(p

k) ≡
∏

pk∥n: p>2 (k + 1) (mod 2). In particular, if

n is of the form r2 for some integer r, then gcd(σ(n), q) = 1. As such, the left hand side of
(33) is no less than ∑

r≤x1/2
(σ(r2),q)=1

1 ≥ x1/2

(log x)1−α̃
exp(O((log log (3q))O(1))).

Here to write the last bound above, we have invoked Proposition 4.1 with f(n) := σ(n2) for
which F (T ) := T 2 + T + 1 and αF (q) = α̃(q).
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To obtain the upper bound, it suffices to show that the expression on the right hand side of
(33) bounds (from above) the number of possible tuples (k,m) of non-negative integers for
which m is odd, 2km2 ≤ x and gcd(σ(m2), q) = 1. The contribution of those tuples for which
k > 20 log2 x/ log 2 is no more than

(34)
∑

k> 20 log log x
log 2

∑
m≤

√
x/2k

1 ≤ x1/2
∑

k>
20 log2 x

log 2

1

2k/2
≪ x1/2

(log x)10
;

this is negligible compared to the right hand side of (33). On the other hand, if k ≤
20 log2 x/ log 2, then

√
x/2k ≥ x1/2/(log x)10 ≥ x1/3. Consequently q ≤

(
log
√
x/2k

)3K
, and

another application of Proposition 4.1 shows that given k, the number of possible m is at most∑
m≤

√
x/2k

(σ(m2),q)=1

1 ≪
√
x/2k

(log
√
x/2k)1−α̃

exp
(
O
(
(log2(3q))

O(1)
))

≪ x1/2

2k/2(log x)1−α̃
exp

(
O
(
(log2(3q))

O(1)
))
.

Here we have noted that since k ≤ 20 log2 x/ log x, we have(
log

√
x

2k

)1−α̃

=

(
1

2
log x

)1−α̃(
1 +O

(
k

log x

))
=

(
1

2
log x

)1−α̃(
1 +O

(
log2 x

log x

))
.

Summing the bound in the above display over all k ≥ 0 establishes the upper bound in (33). □

To start proving Theorems 1.3 and 1.4, we set y := exp((log x)ϵ/4) and z := x1/ log2 x. We
shall show that for even q ≤ (log x)K and any coprime residue class a mod q, the dominant
contribution to the count of n ≤ x satisfying σ(n) ≡ a (mod q) comes from those n which
have sufficiently many large prime divisors. More precisely, these are the n which have at least
six prime factors exceeding y counted with multiplicity.

Proposition 5.4. Fix K > 0 and ϵ ∈ (0, 1). We have

(35)
∑

n≤x: P6(n)>y
σ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x

(σ(n),q)=1

1 +O

(
x1/2

φ(q)(log x)1−α̃(q)(1/4+ϵ)

)
,

uniformly in coprime residue classes a mod q to moduli q ≤ (log x)K satisfying gcd(q, 6) = 2.

Proof. We start by bounding the contribution of the z-smooth n to the left hand side. By the
observation made at the start of the proof of Lemma 5.3, any such n can be written in the
form 2km2 for some k ≥ 0 and some z-smooth odd m. The number of possibilities of k given
m is O(log x). This in fact shows that

(36)
∑

n≤x: P (n)≤z
gcd(σ(n),q)=1

1 ≤
∑

m≤x1/2
P (m)≤z

∑
k≤ log x

log 2

1 ≪ log x
∑

m≤x1/2
P (m)≤z

1 ≪ x1/2

(log x)(1/2+o(1)) log3 x
,
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where in the last step we have again invoked [40, Theorem 5.13 and Corollary 5.19, Chapter
III.5]. The last expression above is negligible in comparison to the error term in (35).

Next, we bound the contribution of those n which are divisible by the fourth power of a prime
exceeding y. As before, any such n can be written in the form 2km2 for some k ≥ 0 and some
odd m ≤

√
x/2k where (this time) m is divisible by the square of a prime exceeding y. Given

k, the number of possibilities of m is no more than∑
p>y

∑
m≤

√
x/2k

p2|m

1 ≤
√

x

2k

∑
p>y

1

p2
≪
√
x/2k

y
.

Summing this bound over all k ≥ 0, we find that

(37)
∑

n≤x: (σ(n),q)=1
∃p>y s.t. p4|n

1 ≪
√
x

y
,

which is also negligible compared to the error term in (35).

By (36) and (37), we may thus ignore the contribution of those n to the left hand side of (35),
which are either z-smooth or are divisible by the fourth power of a prime exceeding y. In order
to complete the proof of the proposition, it thus remains to show that

(38)
∑

n≤x: P6(n)>y
P (n)>z; p>y =⇒ p4∤n

σ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x

(σ(n),q)=1

1 +O

(
x1/2

φ(q)(log x)1−α̃(q)(1/4+ϵ)

)
.

To prove this estimate, we start by invoking the orthogonality of the Dirichlet characters mod
q to write
(39) ∑

n≤x: P6(n)>y
P (n)>z; p>y =⇒ p4∤n

σ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x: P6(n)>y

P (n)>z; p>y =⇒ p4∤n
gcd(σ(n),q)=1

1 +
1

φ(q)

∑
χ ̸=χ0,q mod q

χ(a)
∑

n≤x: P6(n)>y
P (n)>z; p>y =⇒ p4∤n

χ(σ(n)).

We remove the additional conditions in the first sum on the right hand side above. To begin
with, we observe that up to a negligible error, we may ignore the condition P6(n) > y: indeed,
any n ≤ x which violates this condition but satisfies all the other conditions in the first sum
can be written in the form 2km2 where m is odd but not z-smooth, has no repeated prime
factor exceeding y, and satisfies P6(m

2) ≤ y and gcd(σ(m2), q) = 1. As such, m can be written
in the form rP for some prime P > z and some odd r coprime to P which satisfies P2(r) ≤ y
and gcd(σ(r2), q) = 1. Altogether, we find that∑

n≤x: P6(n)≤y
P (n)>z; p>y =⇒ p4∤n

gcd(σ(n),q)=1

1 ≤
∑
k≥0

∑
r≤x: P2(r)≤y
(σ(r2),q)=1

∑
z<P≤

√
x/2kr2

1
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≪ x1/2

log z

∑
k≥0

1

2k/2

∑
r≤x: P2(r)≤y
(σ(r2),q)=1

1

r
≪ x1/2 log2 x

log x

∑
r≤x: P2(r)≤y
(σ(r2),q)=1

1

r
.(40)

Any r counted in the above sum can be written in the form AB, where P (B) ≤ y < P (A),
so that A is either 1 or a prime and σ(r2) = σ(A2)σ(B2). Given B, the sum of 1/A over all
possible A is at most 1 +

∑
p≤x 1/p≪ log2 x. We infer that

∑
r≤x: P2(r)≤y
(σ(r2),q)=1

1

r
≪ (log2 x)

∑
B≤x: P (B)≤y
(σ(B2),q)=1

1

B
≪ (log2 x) exp

(∑
p≤y

1(p2+p+1, q)=1

p

)

≪ (log x)α̃ϵ/4(log2 x) exp
(
O
(
(log2(3q))

O(1)
))
,

(41)

where in the last line above, we have invoked Lemma 4.2 on the polynomial F (T ) := T 2+T+1.
Inserting the above bound into (40), we obtain

∑
n≤x: P6(n)≤y

P (n)>z; p>y =⇒ p4∤n
gcd(σ(n),q)=1

1 ≪ x1/2(log2 x)
2

(log x)1−α̃ϵ/4
exp

(
O
(
(log2(3q))

O(1)
))

≪ x1/2

(log x)1−α̃ϵ/2
,

(42)

whereupon from (39), it follows that

(43)
∑

n≤x: P6(n)>y
P (n)>z; p>y =⇒ p4∤n

σ(n)≡a (mod q)

1 =
1

φ(q)

∑
n≤x

(σ(n),q)=1

1

+
1

φ(q)

∑
χ ̸=χ0,q mod q

χ(a)
∑
n≤x

P (n)>z, P6(n)>y
p>y =⇒ p4∤n

χ(σ(n)) +O

(
x1/2

φ(q)(log x)1−α̃ϵ/2

)
.

Here we have also used (36) and (37) respectively to remove the conditions “P (n) > z” and
“p > y =⇒ p4 ∤ y” occurring in the first sum on the right hand side of (39).

In order to estimate the inner sums on χ(σ(n)) in (43), we proceed analogously to our proof of
Theorem 1.2. For a given nontrivial character χ mod q, any n counted in the aforementioned
sum can be uniquely written in the form MP 2

1 · · ·P 2
j for some j ≥ 3, some y-smooth M and

some primes P1, . . . , Pj, which satisfy P1 > z and y < Pj < · · · < P2 < P1. (Here the condition
j ≥ 3 is a consequence of P6(n) > y.) Proceeding as in the proof of Theorem 1.1, and using
the estimate ∑

y<p≤Y

χ(p2 + p+ 1) = ηχ(π(Y )− π(y)) +O(φ(q)Y exp(−C0

√
log y))
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in place of (19), we obtain the following analogue of (20)∑
n≤x

P (n)>z, P6(n)>y
p>y =⇒ p4∤n

χ(σ(n)) =
∑
j≥3

(ηχ)
j

(j − 1)!

∑
M≤x

P (M)≤y

χ(σ(M))
∑

P1,...,Pj

P1>z, Pj ···P1≤
√
x/M

P2,...,Pj∈(y,P1) distinct

1

+O(x1/2 exp(−C1

√
log y)),

(44)

where C1 = C1(K) is a constant. Bounding the main term above as in (21), we deduce that

(45)
∑
n≤x

P (n)>z, P6(n)>y
p>y =⇒ p4∤n

χ(σ(n)) ≪ |ηχ|3
x1/2(log2 x)

3

(log x)1−|ηχ|

∑
M≤x

P (M)≤y
(σ(M),q)=1

1

M1/2
+ x1/2 exp(−C1

√
log y).

To estimate the sum on M above, we recall that, by the observation made at the start of the
proof of Lemma 5.3, any M counted in the sum can be uniquely written in the form 2km2 for
some k ≥ 0 and some odd y-smooth m satisfying gcd(σ(m2), q) = 1. We thus obtain∑

M≤x
P (M)≤y

(σ(M),q)=1

1

M1/2
≤
∑
k≥0

1

2k/2

∑
m≤

√
x/2k

P (m)≤y
(σ(m2),q)=1

1

m

≪ exp

(∑
p≤y

1(p2+p+1, q)=1

p

)
≪ (log x)α̃ϵ/4 exp

(
O
(
(log2(3q))

O(1)
))
.

(46)

Inserting this bound into (45) yields∑
n≤x

P (n)>z, P6(n)>y
p>y =⇒ p4∤n

χ(σ(n)) ≪ |ηχ|3
x1/2(log2 x)

3

(log x)1−|ηχ|−α̃ϵ/4
exp

(
O
(
(log2(3q))

O(1)
))
+x1/2 exp(−C1

√
log y).

Assume that f(χ) ̸∈ S, where S is the set of eighteen positive integers considered in Proposition
5.1. Then |ηχ| ≤ α̃/4, and we obtain, for all such characters χ mod q,

(47)
∑
n≤x

P (n)>z, P6(n)>y
p>y =⇒ p4∤n

χ(σ(n)) ≪ |ηχ|3
x1/2

(log x)1−α̃(1/4+ϵ/2)
+ x1/2 exp(−C1

√
log y).

Now from the computations in (29) and (30), we see that for each nontrivial character χ mod
q, we have (with eℓ := vℓ(f(χ)) as before),

|ηχ| =
∏
ℓ|q

|ηχ,ℓ| ≤
∏
ℓ|f(χ)

ℓeℓ/2 + 1

φ(ℓeℓ)
≤
∏
ℓ|f(χ)

ℓ−eℓ/2
(
1 +O

(
1

ℓ1/2

))
≤ f(χ)−1/2 exp(O(

√
log q)).

Since there are no more than d characters mod q having conductor d, we obtain∑
χ ̸=χ0,q mod q

|ηχ|3 ≤
∑
d|q

d · 1

d3/2
exp(O(

√
log q)) ≤ exp(O(

√
log q)),
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where we have noted that
∑

d|q d
−1/2 ≤

∏
ℓ|q(1 + O(ℓ−1/2)) ≤ exp(O(

√
log q)). Summing the

bound (47) over all nonprincipal characters χ mod q having f(χ) ̸∈ S, and invoking the bound
on
∑

χ ̸=χ0,q mod q |ηχ|3 obtained above, we find that

(48)
∑

χ ̸=χ0,q mod q
f(χ) ̸∈S

∣∣∣∣∣∣∣∣
∑

n≤x: P (n)>z
P6(n)>y; p>y =⇒ p4∤n

χ(σ(n))

∣∣∣∣∣∣∣∣≪
x1/2

(log x)1−α̃(1/4+ϵ)
.

It remains to consider the characters χ mod q whose conductors lie in the set S. For each such
character, we may invoke (42), (36) and (37) to obtain∑

n≤x
P6(n)>y, P (n)>z
p>y =⇒ p4∤n

χ(σ(n)) =
∑
n≤x

χ(σ(n)) +O

(
x1/2

(log x)1−α̃ϵ/2

)
.

Recalling the observation made at the start of the proof of Lemma 5.3 along with the bound
(34), we obtain
(49) ∑

n≤x
P6(n)>y, P (n)>z
p>y =⇒ p4∤n

χ(σ(n)) =
∑

k≤ 20 log log x
log 2

χ(σ(2k))
∑

m≤
√
x/2k

12∤m χ(σ(m2)) + O

(
x1/2

(log x)1−α̃ϵ/2

)
.

Finally, we invoke Theorem 1.1 on the multiplicative function m 7→ 12∤m χ(σ(m2)) to bound

each of the inner sums in the above display. Noting that
√
x/2k ≥ x1/2/(log x)10 > z and that

ηχ plays the role of ϱ, we deduce that the sums on m in the above display are all

≪
√
x/2k

(log z)1−Re(ηχ)

(
(log y)α̃ +

(log y)1+α̃

log z

)
exp

(∑
p≤y

1(p2+p+1, q)=1

p

)

≪ x1/2(log2 x)
2

2k/2(log x)1−α̃/4−α̃ϵ/2
exp

(
O
(
(log2(3q))

O(1)
))

≪ x1/2

2k/2(log x)1−α̃(1/4+ϵ)
.

In the last line above, we have utilized the second assertion of Proposition 5.1 (namely that
Re(ηχ) ≤ α̃/4) in conjunction with Lemma 4.2. Summing the above bound over all k ≥ 0 and
inserting into (49), we obtain ∑

n≤x
P6(n)>y, P (n)>z
p>y =⇒ p4∤n

χ(σ(n)) ≪ x1/2

(log x)1−α̃(1/4+ϵ)

for all characters χ mod q having f(χ) ∈ S. We use this bound for each of the O(1) nontrivial
characters χ mod q having f(χ) ∈ S and use (48) to deal with the rest of the characters mod
q. Inserting these bounds into (43), we obtain the desired estimate (38), which completes the
proof of the proposition. □

Remark. The proofs of Theorem 1.2 and Proposition 5.4 substantiate the comments following
Theorem 1.1. Note that ϱ = −α for the sum

∑
n≤x ψ(σ(n)) at the end of section 4, so a direct
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application of [30, Theorem 1.1] (or the methods used to prove it) would be unable to detect
the negative sign of ϱ and would yield a bound on this sum which would have the same order of
magnitude as the main term (by Lemma 5.3). A similar phenomenon takes place in the proof
of Proposition 5.4 for the sums of χ(σ(n)) for the characters χ having conductors in the set S.
On the other hand, we cannot apply this paper’s Theorem 1.1 for all the nontrivial characters
χ mod q, for if we did, then the terms with (log y)1+|ϱ| in Theorem 1.1 would culminate into a
large error term that would stand in the way of achieving uniformity in q up to (fixed) large
powers of log x.

6. Distribution of the sum-of-divisors function to general even moduli:
Proof of Theorem 1.3

We continue with y and z as defined in the previous section. Observe that the right hand sides
of (4) and (35) are equal up to a negligible error: indeed any n having P6(n) ≤ q also has
P6(n) ≤ y, so that by (36), (37) and (42), the contribution of all such n to the right hand side of
(4) is absorbed in the error term. This observation also shows that the first assertion (4) of the
theorem implies the second (5), by means of Lemma 5.3 and the fact that α̃(q) ≫ 1/ log2(3q).
By Proposition 5.4, it thus suffices to show that

(50)
∑

n≤x: q<P6(n)≤y
P (n)>z; p>y =⇒ p4∤n

σ(n)≡a (mod q)

1 ≪ x1/2

φ(q)(log x)1−α̃ϵ/2

in order to complete the proof of Theorem 1.3.

We write the left hand side of (50) as Σ1+Σ2, where Σ1 denotes the count of the n contributing
to the sum in (50) which are divisible by the fourth power of a prime exceeding q. First consider
the contribution of the n counted in Σ1. As before, the coprimality of σ(n) with q guarantees
that we can write n = 2km2 for some k ≥ 0 and some odd m satisfying P6(m

2) ≤ y. Since
n is divisible by the fourth power of a prime exceeding q, it follows that the squarefull part
of m (i.e., the largest squarefull divisor of m) is divisible by a prime exceeding q. Hence m
can be written in the form rSP , with r, S, P being pairwise coprime and satisfying P2(r) ≤ y,
P = P (n) > z and with S > q2 being squarefull. Altogether, we find that

Σ1 ≤
∑

n≤x: P6(n)≤y
P (n)>z; p>y =⇒ p4∤n

∃p>q: p4|n
σ(n)≡a (mod q)

1 ≤
∑
k≥0

∑
r≤x1/2: P2(r)≤y
p>y =⇒ p2∤r
(σ(r2),q)=1

∑
S>q2

S squarefull

∑
z<P≤x1/2

/
2k/2rS

1

≪ x1/2

log z

∑
k≥0

1

2k/2

∑
r≤x1/2: P2(r)≤y

(σ(r2),q)=1

1

r

∑
S>q2

S squarefull

1

S
≪ x1/2 log2 x

q log x

∑
r≤x1/2: P2(r)≤y

(σ(r2),q)=1

1

r
≪ x1/2

q(log x)1−α̃ϵ/2
,

(51)

where have used (41) and the standard bound
∑

S>q2 squarefull 1/S ≪ 1/q. Since the last

expression above is absorbed in the right hand side of (50), it remains to show that the same
is true for the sum Σ2.
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Now any n counted in Σ2 has P6(n) > q but is not divisible by the fourth power of a prime
exceeding q. Invoking the observation at the start of the proof of Lemma 5.3, we find that any
such n can be written in the form 2kr2(P1P2P3)

2, where k ≥ 0, P2(r) ≤ y, and P1, P2, P3 are
primes satisfying P1 = P (n) > z, q < P3 < P2 < P1, and σ(n) = σ(2k)σ(r2)

∏3
j=1(P

2
j +Pj+1).

Given k and r, the congruence σ(n) ≡ a (mod q) forces (P1, P2, P3) mod q ∈ Vq(aσ(2kr2)−1),
where u−1 denotes the multiplicative inverse of a coprime residue u mod q, and for any coprime
residue w mod q, we have defined

Vq(w) :=

{
(v1, v2, v3) ∈ U3

q :
3∏
j=1

(v2j + vj + 1) ≡ w (mod q)

}
.

(Recall that Uq denotes the group of units modulo q.) Given k, r and (v1, v2, v3) ∈ Vq(aσ(2kr2)−1),
we bound the number of possible choices of P1, P2, P3 which satisfy (P1, P2, P3) ≡ (v1, v2, v3) mod
q. Given P2 and P3, the number of possible P1 ∈ (z, x1/2/2k/2rP2P3] satisfying P1 ≡ v1 (mod q)
is, by the Brun-Titichmarsh inequality,

≪ x1/2/2k/2rP2P3

φ(q) log(z/q)
≪ x1/2 log2 x

φ(q) log x
· 1

2k/2rP2P3

.

We now sum this bound over all P2, P3 ∈ (q, x] satisfying P2 ≡ v2 (mod q) and P3 ≡ v3
(mod q). By Brun-Titchmarsh and partial summation, we have∑

q<p≤x
p≡v (mod q)

1

p
≪ log2 x

φ(q)
.

Applying this to the sums on P2 and P3, we find that given k, r and (v1, v2, v3) ∈ Vq(aσ(2kr2)−1),
the number of possible P1, P2, P3 satisfying (P1, P2, P3) ≡ (v1, v2, v3) mod q is

≪ 1

φ(q)3
· x

1/2(log2 x)
3

2k/2r log x
.

Now let Vq := max{#Vq(w) : w ∈ Uq}. Summing the above bound over all (v1, v2, v3) ∈
Vq(aσ(2kr2)−1), and subsequently over all k and r, we obtain

(52) Σ2 ≪
Vq

φ(q)3
· x

1/2(log2 x)
4

(log x)1−α̃ϵ/4
exp

(
O
(
(log2(3q))

O(1)
))
.

To bound Vq, we consider an arbitrary coprime residue w mod q, and note that #Vq(w) =∏
ℓe∥q#Vℓe(w) by the Chinese Remainder Theorem. Moreover, by orthogonality,

#Vℓe(w) =
∑

v1,v2,v3 mod ℓe

χ0,ℓ(v1v2v3) ·
1

φ(ℓe)

∑
χ mod ℓe

χ(w)χ

(
3∏
j=1

(v2j + vj + 1)

)

=
(α̃(ℓ)φ(ℓe))3

φ(ℓe)

1 +
1

(α̃(ℓ)φ(ℓe))3

∑
χ ̸=χ0,ℓ mod ℓe

χ(w)

( ∑
v mod ℓe

χ0,ℓ(v)χ(v
2 + v + 1)

)3
 .

Given χ ̸= χ0,ℓ mod ℓe, let ℓe0 denote the conductor of χ, so that e0 ∈ {1, . . . , ℓe}. Then with
χ also denoting the primitive character mod ℓe0 inducing χ, the computations and arguments
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in (28), (29) and (30) reveal that if ℓ ≥ 5, then∣∣∣∣∣ ∑
v mod ℓe

χ0,ℓ(v)χ(v
2 + v + 1)

∣∣∣∣∣ = ℓe−e0

∣∣∣∣∣ ∑
v mod ℓe0

χ(v2 + v + 1)− 1e0=1

∣∣∣∣∣≪ ℓe−e0 · ℓe0/2 ≪ ℓe−e0/2.

Since there are at most φ(ℓe0) characters mod ℓe with conductor ℓe0 , we obtain

#Vℓe(w) =
(α̃(ℓ)φ(ℓe))3

φ(ℓe)

{
1 +O

(
1

φ(ℓe)3

∑
1≤e0≤e

φ(ℓe0) (ℓe−e0/2)3

)}
≤ φ(ℓe)3

φ(ℓe)

{
1 +O

(
1

ℓ1/2

)}
,

where we have recalled that for each odd prime ℓ dividing q, we have α̃(ℓ) ≥ 1−2/(ℓ−1) ≥ 1/2.
Letting e1 := v2(q) and multiplying the above bound over all the odd primes dividing q, we
obtain

#Vq(w)
φ(q)3

≤ #V2e1 (w)

φ(2e1)3

∏
ℓe∥q
ℓ>2

1

φ(ℓe)

(
1 +O

(
1

ℓ1/2

))
≤ #V2e1 (w)

φ(2e1)2
· 1

φ(q)
exp(O(

√
log q))

uniformly in coprime residues w mod q. Recalling (from the proof of Proposition 5.1) that the
map v 7→ v2 + v + 1 is a bijection on the multiplicative group mod 2e1 , we see that

(53) #V2e1 (w) =
∑

a1,a2,a3 mod 2e1
a1a2a3≡w (mod 2e1 )

1 =
∑

a1,a2 mod 2e1
gcd(a1a2,2)=1

1 = φ(2e1)2,

leading to the bound
#Vq(w)
φ(q)3

≤ 1

φ(q)
exp(O(

√
log q))

uniformly in coprime residues w mod q. Hence this bound also holds true for the ratio Vq/φ(q)
3,

and inserting this latter bound into (52) we obtain

Σ2 ≪
x1/2(log2 x)

4

φ(q)(log x)1−α̃ϵ/4
exp(O(

√
log q)) ≪ x1/2

φ(q)(log x)1−α̃ϵ/2
,

thus showing that Σ2 is also absorbed into the right hand side of (50) and completing the
proof of the theorem. □

6.1. Optimality in the restriction P6(n) > q. We construct a counterexample demonstrat-
ing that the restriction P6(n) > q is optimal, in the sense that uniformity in q ≤ (log x)K fails
if this restriction is weakened, or in other words, if the set of inputs n is slightly enlarged to
those having fewer than 6 prime factors exceeding q. To do this, we define

(54) Ṽq(w) :=
{
(v1, v2) ∈ Uq × Uq : (v21 + v1 + 1)(v22 + v2 + 1) ≡ w (mod q)

}
.

We shall first establish that

(55) #Ṽℓ2(9 · 16−1) ≥ 2ℓ2
(
1 +O

(
1√
ℓ

))
uniformly in primes ℓ ≥ 5, with 16−1 denoting the multiplicative inverse of 16 mod ℓ. For each

(v1, v2) ∈ Ṽℓ2(9·16−1), we set ai ≡ v2i +vi+1 (mod ℓ2), which is equivalent to (2vi+1)2 ≡ 4ai−3
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(mod ℓ2). As such, we may write

(56) #Ṽℓ2(9 · 16−1) =
∑

(a1,a2)∈Uℓ2×Uℓ2

a1a2≡9·16−1 (mod ℓ2)
each 4ai−3 is a square mod ℓ2

∑
(v1,v2)∈Uℓ2×Uℓ2

each (2vi+1)2≡4ai−3 (mod ℓ2)

1 ≥ S1 + S2,

where S1 denotes the contribution of the case 4a1 − 3 ≡ 4a2 − 3 ≡ 0 (mod ℓ2) and S2 denotes
the contribution of the case ℓ ∤ (4a1 − 3)(4a2 − 3).

First of all, we see that

(57) S1 =
∑

(v1,v2)∈Uℓ2×Uℓ2

each (2vi+1)2≡0 (mod ℓ2)

1 =
∑

(v1,v2)∈Uℓ2×Uℓ2

each vi≡−2−1 (mod ℓ)

1 = ℓ2.

We seek to put a lower bound on the sum S2. To do this, we first note that the condition
ℓ ∤ (4a1−3)(4a2−3) in conjunction with the condition that 4a1−3 and 4a2−3 are both squares
mod ℓ2 are together equivalent to the condition that

(
4a1−3
ℓ

)
=
(
4a2−3
ℓ

)
= 1; indeed the forward

direction is tautological, while the reverse implication is a consequence of Hensel’s Lemma. In
fact by the same lemma, we see that for each choice of ai ∈ U2

ℓ satisfying
(
4ai−3
ℓ

)
= 1, the

congruence t2 ≡ 4ai − 3 (mod ℓ2) has exactly two distinct solutions t mod ℓ2. If ai ̸≡ 1
(mod ℓ), then 4ai − 3 ̸≡ 1 (mod ℓ), so that t ̸≡ 1 (mod ℓ) for both of the two aforementioned
solutions, and each of them leads to a unique solution vi ∈ Uℓ2 (given by 2vi+1 ≡ t (mod ℓ2)).
Summarizing our argument, we have shown that

S2 ≥
∑

(a1,a2)∈Uℓ2×Uℓ2

a1a2≡9·16−1 (mod ℓ2)

( 4a1−3
ℓ )=( 4a2−3

ℓ )=1

∑
(v1,v2)∈Uℓ2×Uℓ2

each (2vi+1)2≡4ai−3 (mod ℓ2)

1 ≥ 4
∑

(a1,a2)∈Uℓ2×Uℓ2

16a1a2≡9 (mod ℓ2)

each ai ̸≡1 (mod ℓ), ( 4ai−3

ℓ )=1

1.

Now the condition a1a2 ≡ 9 · 16−1 (mod ℓ2) shows that if a1 ≡ 1 (mod ℓ), then a2 ≡ 9 · 16−1

(mod ℓ) which can be lifted to a residue class mod ℓ2 in at most ℓ ways. This shows that
ignoring the condition “each ai ̸≡ 1 (mod ℓ)” in the last sum in the above display incurs an
error of O(ℓ). We deduce that

S2 ≥ 4
∑

(a1,a2)∈Uℓ2×Uℓ2

16a1a2≡9 (mod ℓ2)

( 4a1−3
ℓ )=( 4a2−3

ℓ )=1

1 +O(ℓ).

Moreover, for any ai ∈ Uℓ2 satisfying
(
4ai−3
ℓ

)
= 1, we can write 4ai − 3 in the form u2i + ℓci

(mod ℓ2) for some ui, ci ∈ {0, 1, . . . , ℓ− 1} such that gcd(ui, ℓ) = 1. In fact, given ai, there are
exactly two possible choices of ui and exactly one possible choice of ci (this is because ui can
only be one of the two square roots of 4ai − 3 mod ℓ, and either of them determines the same

value of ci via the congruence ci ≡ 4ai−3−u2i
ℓ

mod ℓ). Hence

(58) S2 ≥
∑

(u1,u2)∈Uℓ×Uℓ

(u21+3)(u22+3)≡9 (mod ℓ)

∑
(c1,c2)∈Z/ℓZ×Z/ℓZ

c1(u22+3)+c2(u21+3)≡ 9−(u21+3)(u22+3)

ℓ
(mod ℓ)

1 +O(ℓ),
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where we have noted that since 4ai ≡ u2i +3+ℓci (mod ℓ2), the condition (u21+3+ℓc1)(u
2
2+3+

ℓc2) ≡ 16a1a2 ≡ 9 (mod ℓ2) can be rewritten as ℓ(c1(u
2
2+3)+c2(u

2
1+3)) ≡ 9− (u21+3)(u22+3)

(mod ℓ2). Now given c1, the congruence involving c1 and c2 in (58) determines c2 uniquely
mod ℓ. Varying c1 over the ℓ possibilities, we thus find that

(59) S2 ≥ ℓ
∑

(u1,u2)∈Uℓ×Uℓ

(u21+3)(u22+3)≡9 (mod ℓ)

1 +O(ℓ) = ℓ
∑

(u1,u2)∈Fℓ×Fℓ

(u21+3)(u22+3)=9 in Fℓ

1 +O(ℓ),

where in the last equality above, we have noted that there is exactly one possible tuple
(u1, u2) ∈ Fℓ × Fℓ satisfying (u21 + 3)(u22 + 3) = 9 in Fℓ, in which either u1 or u2 is zero
(namely the tuple (u1, u2) = (0, 0)).

In order to estimate the last sum in (59), we proceed in a manner similar to the proof of
Theorem 1.4(b) in [32]: we first show that the polynomial G(X, Y ) := (X2 + 3)(Y 2 + 3)− 9 is
absolutely irreducible over Fℓ[X, Y ]. 2 Indeed, assume that G = UV for some U, V ∈ Fℓ[X, Y ];
we wish to show that one of U or V must be constant. If either U or V is a polynomial only
in Y (say U(X, Y ) = u(Y )), then taking X to be a root θ ∈ Fℓ of the polynomial X2 + 3 on
both sides of the identity G = UV , we obtain −9 = G(θ, Y ) = u(Y )V (θ, Y ) in the ring Fℓ[Y ],
showing that U(X, Y ) = u(Y ) must be constant. On the other hand, if neither U nor V is a
polynomial in Y only, then by comparing the degrees in the variable X on both sides of the
identity H = UV , we find that U(X, Y ) = u1(Y )X + u0(Y ) and V (X, Y ) = v1(Y )X + v0(Y )
for some ui, vi ∈ Fℓ[Y ]. Comparing the coefficients of X on both sides of the identity

(Y 2 + 3)(X2 + 3)− 9 = (u1(Y )X + u0(Y ))(v1(Y )X + v0(Y )),

we get the three identities u1(Y )v1(Y ) = Y 2+3, u1(Y )v0(Y )+u0(Y )v1(Y ) = 0 and u0(Y )v0(Y ) =
3Y 2. Again, letting θ ∈ Fℓ be a root of the polynomial Y 2 + 3, the first of the three identities
shows that Y −θ divides exactly one of u1 or v1 (as the polynomial Y 2+3 is separable over Fℓ).
Assuming without loss of generality that (Y − θ) | u1(Y ) (so that gcd(Y − θ, v1(Y )) = 1), the
second of the aforementioned identities forces Y −θ to divide u0(Y ), leading to a contradiction
in the third identity (since 3θ2 = −9 ̸= 0 in Fℓ). This establishes that G is indeed absolutely
irreducible over Fℓ[X, Y ].

Consequently, the variant of the Weil bound established in [23, Corollary 2(b)] yields, from
(59),

S2 ≥ ℓ(ℓ+O(
√
ℓ)) +O(ℓ) = ℓ2

(
1 +O

(
1√
ℓ

))
.

Combining this with (57) and (56) completes the proof of (55).

Now set q := 2
(∏

5≤ℓ≤Y ℓ
)2
, where Y ≪ log2 x is a parameter to be chosen appropriately

later. Then q ≤ (log x)O(1) and letting wq denote the unique coprime residue mod q satisfying
wq ≡ 9 · 16−1 (mod ℓ2) for all primes ℓ ∈ [5, Y ], the lower bound (55) yields
(60)

#Ṽq(wq) =
∏

5≤ℓ≤Y

#Ṽℓ2(9 · 16−1) ≫ 2π(Y )q
∏

5≤ℓ≤Y

(
1 +O

(
1√
ℓ

))
≫ 2π(Y )q exp(−C2

√
log2 x).

2While this claim follows from the absolute irreducibility established in the proof of [32, Theorem 1.4(b)],
we shall give a more straightforward self-contained argument that suffices for our current setting.
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for some absolute constant C2 > 0. Now consider any integer n of the form P 2
1P

2
2 , where P1

and P2 are primes satisfying x1/10 < P2 ≤ x1/6 < P1 ≤ x1/2/P2 and (P1, P2) mod q ∈ Ṽq(wq).
Then n ≤ x, P4(n) = P2 > x1/10 > q and σ(n) = (P 2

1 + P1 + 1)(P 2
2 + P2 + 1) ≡ wq (mod q).

By the Siegel-Walfisz Theorem and partial summation, we obtain∑
n≤x: P4(n)>q
σ(n)≡wq (mod q)

1 ≥
∑

(v1,v2)∈Ṽq(wq)

∑
x1/10<P2≤x1/6
P2≡v2 (mod q)

∑
x1/6<P1≤x1/2/P2

P1≡v1 (mod q)

1

≫
∑

(v1,v2)∈Ṽq(wq)

∑
x1/10<P2≤x1/6
P2≡v2 (mod q)

x1/2/P2

φ(q) log x
≫ #Ṽq(wq)

φ(q)2
· x

1/2

log x
.

An application of (60) now yields∑
n≤x: P4(n)>q
σ(n)≡wq (mod q)

1 ≫ 2π(Y )

φ(q)
· x

1/2

log x
exp(−C2

√
log2 x)

for some constant C2 > 0. By Lemma 5.3, the quantity on the right hand side above grows
strictly faster than the expected main term 1

φ(q)

∑
n≤x

(σ(n),q)=1
1 as soon as 2π(Y ) > (log x)(1+δ)α̃

for some fixed δ > 0, which in turn is equivalent to π(Y ) > (1 + δ)α̃ log2 x/ log 2. But now
π(Y ) > Y/2 log Y , while

α̃(q) =
∏

5≤ℓ≤Y
ℓ≡1 (mod 3)

(
1− 2

ℓ− 1

)
= exp

−2
∑

5≤ℓ≤Y
ℓ≡1 (mod 3)

1

ℓ
+O(1)

 <
K2

log Y
(61)

for some absolute constant K2 > 0, where we have used the prime number theorem in
arithmetic progressions to estimate the sum on ℓ. As such, the desired condition π(Y ) >
(1 + δ)α̃ log2 x/ log 2 holds as soon as Y > 2K2(1 + δ) log2 x/ log 2, which is compatible with
the only other condition Y ≪ log2 x needed on the parameter Y . Choosing Y accordingly, we
have therefore established that the condition P6(n) > q in Theorem 1.3 cannot be weakened
to P4(n) > q in the range of uniformity in q. Since the largest odd divisor of n is a perfect
square, it follows that the restriction P6(n) > q in Theorem 1.3 is indeed optimal.

7. Distribution of the sum-of-divisors function to squarefree even moduli:
Proof of Theorem 1.4

As in the beginning of the previous section, we can show that the right hand sides of (6) and
(35) are equal up to a negligible error and that the first assertion (6) of the theorem implies
the second (7). Indeed, by previous arguments, this only needs the following analogue (and
immediate consequence) of the bound (42):∑

n≤x: P4(n)≤y
P (n)>z; p>y =⇒ p4∤n

gcd(σ(n),q)=1

1 ≪ x1/2

(log x)1−α̃ϵ/2
.
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Hence to complete the proof of the theorem, it suffices to show the following analogue of (50)
uniformly in squarefree even moduli q ≤ (log x)K and in coprime residues a mod q:

(62)
∑

n≤x: q<P4(n)≤y
P (n)>z; p>y =⇒ p4∤n

σ(n)≡a (mod q)

1 ≪ x1/2

φ(q)(log x)1−α̃ϵ/2
.

As before, we write the sum on the left hand side in the form Σ̃1 + Σ̃2, where Σ̃1 denotes the
contribution of the n which are divisible by the fourth power of a prime exceeding q. Then
with Σ1 as defined in the previous section, it follows by the intermediate bounds in (51) that

Σ̃1 ≤
∑

n≤x: P4(n)≤y
P (n)>z; p>y =⇒ p4∤n

∃p>q: p4|n
σ(n)≡a (mod q)

1 ≤
∑

n≤x: P6(n)≤y
P (n)>z; p>y =⇒ p4∤n

∃p>q: p4|n
σ(n)≡a (mod q)

1 ≪ x1/2

q(log x)1−α̃ϵ/2

is absorbed in the right hand side of (62).

In order to estimate the sum Σ̃2, we note that any n counted in this sum has P4(n) > q but
is not divisible by the fourth power of a prime exceeding q. Consequently, as in the previous
section, we may write n = 2kr2(P1P2)

2 where k ≥ 0, P2(r) ≤ y, and P1, P2 are primes satisfying
P1 = P (n) > z, q < P2 < P1, and σ(n) = σ(2k)σ(r2)

∏2
j=1(P

2
j + Pj + 1). Given k and r, the

congruence σ(n) ≡ a (mod q) forces (P1, P2) mod q ∈ Ṽq(aσ(2kr2)−1), where Ṽq(w) is as defined
in (54) for any coprime residue w mod q. Hereafter, setting Ṽq := max{#Ṽq(w) : w ∈ Uq} and
replicating the arguments leading to (52) gives the following analogue of the latter bound:

(63) Σ̃2 ≪
Ṽq

φ(q)2
· x

1/2(log2 x)
3

(log x)1−α̃ϵ/4
exp

(
O
(
(log2(3q))

O(1)
))
.

Now since q is squarefree, we may write #Ṽq(w) =
∏

ℓ|q#Ṽℓ(w) for any coprime residue w

mod q. Here #Ṽℓ(w) is no more than the number of Fℓ-rational points of the polynomial
H(X, Y ) := (X2 + X + 1)(Y 2 + Y + 1) − w. We claim that this latter number is no more
than φ(ℓ)(1 +O(ℓ−1/2)). By a computation similar to (53), this is true for ℓ = 2 (without the
multiplicative error term), so we may consider the case ℓ ≥ 5. But in fact, an argument entirely
analogous to that given for the polynomial (X2 +3)(Y 2 +3)− 9 in subsection 6.1, shows that
the polynomial H is absolutely irreducible over Fℓ[X, Y ]. (Here again, it is important that
w ̸= 0 ∈ Fℓ and that since ℓ ≥ 5, the polynomial Y 2 + Y + 1 is separable over Fℓ.) As such,
[23, Corollary 2(b)] establishes our claim.

As a consequence, we obtain #Ṽq(w) ≤
∏

ℓ|q φ(ℓ)(1 + O(ℓ−1/2)) ≤ φ(q) exp(O(
√
log q)) uni-

formly in coprime residues w mod q. The same bound thus continues to hold for Ṽq, and (63)

shows that Σ̃2 is also absorbed in the right hand side of (62), establishing Theorem 1.4. □

7.1. Optimality in the restriction P4(n) > q. The restriction P4(n) > q is crucial and
optimal in the sense that weak equidistribution fails (in the range of uniformity in q provided
by the theorem) as soon as one enlarges the set of inputs n to those having fewer prime
factors exceeding q. Indeed, let q := 2

∏
5≤ℓ≤Y ℓ for some parameter Y ≪ log2 x to be chosen
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appropriately. For a prime P ∈ (q, x1/2], the congruence σ(P 2) ≡ 3 (mod q) holds for P
lying in exactly 2ω(q)−1 distinct coprime residue classes modulo q (namely those lying in the
residue classes −2 or 1 modulo each of the odd prime divisors of q). As such, by the Siegel-

Walfiz theorem, there are ≫ 2ω(q)

φ(q)
x1/2

log x
many integers n ≤ x having P2(n) > q and σ(n) ≡ 3

(mod q), coming only from the squares of the primes lying in the interval (x1/4, x1/2]. By (33),
the coprime residue class 3 mod q will be over-represented as soon as 2ω(q) > (log x)(1+δ)α̃(q)

for a fixed δ > 0. By the same computation as in (61), we have α̃(q) ≪ 1/ log Y , whereas
ω(q) ≥ Y/2 log Y . The inequality 2ω(q) > (log x)(1+δ)α̃(q) is thus ensured as soon as we choose
Y > K1 log2 x for some appropriate constant K1 > 0, a condition that is consistent with the
only requirement Y ≪ log2 x on Y . This shows that the restriction P2(n) > q is inadequate
to get weak equidistribution to moduli varying up to a fixed arbitrary power of log x. Since n
is of the form 2km2 for some odd m, it follows that the restriction P4(n) > q in Theorem 1.4
is optimal.

Remark. The above example may be compared with the one given in the discussion following
the statement of Theorem 1.3 in [32].
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17. G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci.
Hungar. 19 (1968), 365–403.

18. G. Halász, On the distribution of additive and the mean values of multiplicative arithmetic functions, Stud.
Sci. Math. Hungar. 6 (1971), 211–233.

19. R.R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Mathematics, vol. 90, Cambridge University
Press, Cambridge, 1988.

20. R.R. Hall and G. Tenenbaum, Effective mean value estimates for complex multiplicative functions, Math.
Proc. Cambridge Philos. Soc. 110 (1991), 337–351.

21. Y. Lamzouri, M. T. Phaovibul, and A. Zaharescu, On the distribution of the partial sum of Euler’s totient
function in residue classes, Colloq. Math. 123 (2011), 115–127.

22. N. Lebowitz-Lockard, P. Pollack, and A. Singha Roy, Distribution mod p of Euler’s totient and the sum of
proper divisors, Michigan Math. J. 74 (2024), 143–166.

23. D.B. Leep and C.C. Yeomans, The number of points on a singular curve over a finite field, Arch. Math.
(Basel) 63 (1994), 420–426.

24. H. L. Montgomery and R.C. Vaughan, Mean values of multiplicative functions, Period. Math. Hungar. 43
(2001), no. 1–2, 199–214.

25. W. Narkiewicz, On distribution of values of multiplicative functions in residue classes, Acta Arith. 12
(1967), 269–279.

26. W. Narkiewicz, Distribution of coefficients of eisenstein series in residue classes, Acta Arith. 43 (1983),
83–92.

27. W. Narkiewicz, Uniform distribution of sequences of integers in residue classes, Lecture Notes in Mathe-
matics, vol. 1087, Springer-Verlag, Berlin, 1984.

28. , Weak proper distribution of values of multiplicative functions in residue classes, J. Aust. Math.
Soc. 93 (2012), 173–188.

29. W. Narkiewicz and F. Rayner, Distribution of values of σ2(n) in residue classes, Monatsh. Math. 94 (1982),
133–141.

30. P. Pollack and A. Singha Roy, Mean values of multiplicative functions and applications to residue-class
distribution, submitted.

31. , Joint distribution in residue classes of polynomial-like multiplicative functions, Acta Arith. 202
(2022), 89–104.

32. , Distribution in coprime residue classes of polynomially-defined multiplicative functions, Math. Z.
303 (2023), no. 4, Paper No. 93, 20 pages.

33. Paul Pollack, Some arithmetic properties of the sum of proper divisors and the sum of prime divisors,
Illinois J. Math. 58 (2014), no. 1, 125–147. MR 3331844

34. F. Rayner, Weak uniform distribution for divisor functions. i, Math. Comp. 50 (1988), 335–342.
35. , Weak uniform distribution for divisor functions. ii, Math. Comp. 51 (1988), 331–337.
36. W. Schwarz and J. Spilker, Arithmetical functions, London Mathematical Society Lecture Note Series, vol.

184, Cambridge University Press, Cambridge, 1994, An introduction to elementary and analytic properties
of arithmetic functions and to some of their almost-periodic properties.

37. E. J. Scourfield, Uniform estimates for certain multiplicative properties, Monatsh. Math. 97 (1984), 233–
247.

38. , A uniform coprimality result for some arithmetic functions, J. Number Theory 20 (1985), 315–353.
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