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1. Introduction

We write complex numbers s as σ + it, where σ = Re(s) and t = Im(s). Fix c0 ∈ (0, 1/3) such
that for any integer q ≥ 3, the product

∏
χ mod q L(s, χ) has no zero in the region {σ + it : σ >

1− c0/ log(q(|t|+1))} except at most a simple real zero ηe (the “Siegel zero”) associated to a real
character χe (the “exceptional character”). We also fix any ν > 0 and δ0 ∈ (0, 1], and define
Lq(t) = log(q(|tν| + 1)), D(c0) = {σ + it : σ > 1 − c0/Lq(t)}, and

λq := 1 + max
a mod q

max

{ ∣∣∣∣∣∑
χ

αχχ(a)

∣∣∣∣∣ ,
∣∣∣∣∣∑

χ

βχχ(a)

∣∣∣∣∣
}
.

Writing αχ =
∑

ψ mod q αψ · 1ψ=χ =
∑

ψ mod q αψ · φ(q)−1
∑

a mod q χ(a)ψ(a) and interchanging
sums, we obtain the following important bound

(1.1) |αχ| ≤ λq and |βχ| ≤ λq for all characters χ mod q.

Let {an}∞n=1 be a sequence of complex numbers, {αχ}χ mod q be a set of complex numbers (indexed
at the Dirichlet characters χ mod q), and Ω : R≥0 → R≥0 be a non–decreasing function. We
say that {an}∞n=1 has property P({αχ}χ, c0,Ω) if the Dirichlet series

∑∞
n=1 an/n

s is of the form
F(sν)G(s) for all complex numbers s having σ > 1/ν, where F(sν) :=

∏
χ mod q L(sν, χ)

αχ , and

whereG(s) is a function that analytically continues into the regionD(c0) and satisfies |G(s)| ≤ Ω(t)
therein. We shall also say that a positive integer N is good (with respect to {an}∞n=1) if for any
constant c > 0, there exists a constant κc(N) > 0 depending only on c and N such that∑

x≤n≤x+cx/(log x)N
|an| ≤ κ(c,N) · x1/ν

(log x)N
for all x ≥ 2.

Our first main result is the following:

Theorem 1.1. Let {an}∞n=1 be a sequence of complex numbers. We say that such that the Dirichlet
series

∑∞
n=1 an/n

s has property P({αχ}χ, c0,Ω). Then uniformly in x ≥ 4, in good N ≥ 0, and in
moduli q ≥ 4 satisfying (1− ηe) log x > 3ν, we have∑

n≤x

an −
x1/ν

(log x)1−αχ0

∑
0≤j≤N

1

Γ(αχ0 − j)
· κj
(log x)j

≪ (4λq log q)
λq+2K · κc(N)x1/ν

{
Ωgr(T )(log T )

1+λq

T
+

Ωgr(1/ν)(1− ηe)
−2KΓ(N + 2 + |αχ0|)

(2(1− ηe) log x/141ν)N+2−Re(αχ0 )

}
.
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2. Key analytic inputs: Logarithmic Derivatives and Auxiliary Functions

For any χ mod q, the function LogL(sν, χ) :=
∑

p,r≥1 χ(p
r)/rprsν defines an analytic logarithm of

L(sν, χ) on the region {s : σ > 1/ν}. Hence, the function F(sν) is analytic on {s : σ > 1/ν}, and
(2.1)

F(sν) =
∏
χ

L(sν, χ)αχ = exp

(∑
χ

αχLogL(sν, χ)

)
= exp

(∑
p,r≥1

1

rprsν

∑
χ

αχχ(p
r)

)
if σ > 1/ν.

We now make it clear how our functions can be analytically continued into regions of interest. In
what follows, anything involving the Siegel zero ηe is to be ignored if ηe doesn’t exist.

2.1. Analytic Continuations. Since the functions L(sν, χ0)(s−1/ν), L(sν, χe)(s−ηe/ν)−1, and
{L(sν, χ)}χ ̸=χ0,χe mod q all continue analytically into nonvanishing functions on D(c0), they have
(unique) analytic logarithms T ∗(s, χ0), T ∗(s, χe), and {T (s, χ)}χ ̸=χ0,χe mod q on D(c0) satisfying

T ∗
(
2

ν
, χ0

)
=
∑
p,r≥1

χ0(p
r)

rp2r
+ ln

(
2

ν
− 1

ν

)
, T ∗

(
2

ν
, χe

)
=
∑
p,r≥1

χe(p
r)

rp2r
− ln

(
2

ν
− ηe
ν

)
,

and T (2/ν, χ) =
∑

p,r≥1 χ(p
r)/rp2r for all other χ. (Thus T ∗(s, χ0) is analytic onD(c0) and satisfies

eT
∗(s,χ0) = L(sν, χ0)(s− 1/ν) therein, etc.) Comparing derivatives, we see that the functions

(2.2) T (s, χ0) := T ∗(s, χ0)− log

(
s− 1

ν

)
and T (s, χe) := T ∗(s, χe) + log

(
s− ηe

ν

)
define unique analytic continuations of the functions LogL(s, χ0) and LogL(s, χe), into the regions
D(c0) \ (−∞, 1/ν] and D(c0) \ (−∞, ηe/ν], respectively. (Here log z is the principal branch of the
logarithm, so log(s − 1/ν) is analytic on C \ (−∞, 1/ν].) From this discussion, we see that the
function exp(

∑
χ αχT (s, χ)) =

∏
χ eαχT (s,χ) defines a unique analytic continuation of F(sν) in

(2.1) into D(c0) \ (−∞, 1/ν]; hence, F(sν) = exp(
∑

χ αχT (s, χ)) for all s in this region.

Note also that by the first equality in (2.1) and by analytic continuation, we may write
(2.3)

F ′(sν)

F(sν)
=
∑
χ

αχ
L′(sν, χ)

L(sν, χ)
for all s ̸= 1/ν s.t. s ̸= ρ/ν for any complex zero ρ of

∏
χ

L(s, χ).

This relation is consistent with the analytic continuation of F(sν) in the previous paragraph.

We will also need the following two auxiliary functions: By the above discussion (especially (2.2)),

• The function H̃(s) := exp
(
αχ0T ∗(s, χ0) + αχeT ∗(s, χe) +

∑
χ ̸=χ0,χe

αχT (s, χ)
)

analyti-

cally continue the function F(sν)(s− 1/ν)αχ0 (s− ηe/ν)
−αχe into the region D(c0).

• The function H(s) := s−1 exp
(
αχ0T ∗(s, χ0) +

∑
χ ̸=χ0

αχT (s, χ)
)

analytically continues

the function s−1F(sν)(s− 1/ν)αχ0 into the region D(c0) \ (−∞, ηe/ν].

The reader may now forget all the T and T ∗. All that needs to be remembered from this subsection
are (2.1) and (2.3), that F(sν) continues analytically into D(c0) \ (−∞, 1/ν], and that

H̃(s) = F(sν)(s− 1/ν)αχ0 (s− ηe/ν)
−αχe for all s ∈ D(c0),(2.4)

H(s) = s−1F(sν)(s− 1/ν)αχ0 for all s ∈ D(c0) \ (−∞, ηe/ν],(2.5)

with H̃(s) and H(s) being analytic on D(c0) and D(c0) \ (−∞, ηe/ν], respectively.
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2.2. Analysis of Logarithmic Derivatives. To give suitable bounds on F(sν), we will first
analyze its logarithmic derivative. To this end, the following known results on Dirichlet L-functions
will be useful. In what follows, we write ρ = β + iγ where β = Re(ρ) and γ = Im(ρ). We
denote by

∑∗
ρ:L(ρ,χ)=0 a sum over all zeros ρ of L(s, χ) counted with appropriate multiplicity.

Lemma 2.1. The following hold uniformly in q ≥ 2 and in all Dirichlet characters χ mod q.

(1) Uniformly in all real t, we have
∑∗

ρ:L(ρ,χ)=0
0≤β≤1

1

1 + (t− γ)2
≪ log(q(|t|+ 1)).

(2) Uniformly in all complex s satisfying σ ∈ [−1, 2], |t| ≥ 2, and t ̸= γ for any of the zeros

ρ = β + iγ of L(s, χ), we have
L′(s, χ)

L(s, χ)
=

∑∗

ρ: L(ρ,χ)=0
0≤β≤1, |γ−t|≤1

1

s− ρ
+O(log(q(|t|+ 1))).

(3) We have L′(s, χ)/L(s, χ) ≪ log(q|s|), uniformly in all complex s satisfying σ ≤ −1 and lying
outside the disks of radius 1/4 about the trivial zeros of L(s, χ).

(4) Uniformly in real t ̸∈ (−1, 1), we have #{ρ : 0 ≤ β ≤ 1, |γ − t| ≤ 1, L(ρ, χ) = 0} ≪ log(q|t|).

In most standard texts, these results are stated and proved only for primitive characters, however
the generality above will be helpful here. (Section 8 discusses this lemma for general χ mod q.)

We now give a certain (absolutely convergent) series expansion for the logarithmic derivative of
F(sν) in terms of the zeros of the L-functions, with coefficients that are easy to control.

Proposition 2.2. For any s ∈ C satisfying s ̸= 1/ν and s ̸= ρ/ν for any zero ρ of
∏

χ L(s, χ),

(2.6)
F ′(sν)

F(sν)
=
∑
n≤ξ2

ϱ(n)Λ(n)

nsν
τ(n) − αχ0(ξ

1−νs − ξ2(1−νs))

(1− νs)2 log ξ
+
∑

χ mod q

∑∗

ρ:L(ρ,χ)=0

αχ(ξ
ρ−νs − ξ2(ρ−νs))

(ρ− νs)2 log ξ
,

where ξ := e6Lq(t), ϱ(n) :=
∑

χ mod q αχ χ(n), and τ(n) := 1n≤ξ + 1ξ<n≤ξ2 (2− log n/ log ξ).

Proof. Our starting point is the identity
∫ b+i∞
b−i∞ yz/z2 dz = 1y>1 · 2πi log y which holds for any

b, y > 0. To see this, consider any R ≥ 2, apply the residue theorem to the contour consisting
of the vertical segment [b − iR, b + iR] and the major arc (respectively, minor arc) of the circle
centered at the origin passing through b± iR if y > 1 (resp. y ≤ 1), and then let R → ∞.

The Dirichlet series of L′(s, χ)/L(s, χ) and (2.3) give F ′(zν)/F(zν) =
∑

n≥1 ϱ(n)Λ(n)/n
zν for all

z with Re(z) > 1/ν. We now claim that for all s as in the statement of the proposition,

(2.7)
1

2πi

∫ 2
ν
+|s|+i∞

2
ν
+|s|−i∞

ξν(z−s) − ξ2ν(z−s)

(z − s)2
· F

′(zν)

F(zν)
dz = ν

∑
n≤ξ2

ϱ(n)Λ(n)

nzν
τ(n) log ξ.

Indeed by the identity in the first paragraph of the proof, (2.7) is immediate if F ′(zν)/F(zν) were
replaced by any finite truncation

∑
n≤Y ϱ(n)Λ(n)/nzν of its aforementioned Dirichlet series (for

any Y > ξ6). Moreover by the same Dirichlet series, the absolute value of the integrand above is at

most 2λq ξ
4+2ν|s| (

∑
n Λ(n)/n2) |z−s|−2, which is an L1-function since

∫ 2/ν+|s|+i∞
2/ν+|s|−i∞ |dz|/|z−s|2 <∞

and
∑

n Λ(n)/n
2 ≪ 1. Thus (2.7) follows by the Dominated Convergence Theorem.
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We will now shift contours. For this, note that for any M ≥ 2, the number of zeros of
∏

χ L(s, χ)

in the rectangle [0, 1] × (M,M + 1] is ≪ φ(q) log(qM) by Lemma 2.1(4). Hence there exists
TM ∈ (M,M + 1] satisfying |TM − γ| ≫ (φ(q) log(qM))−1 for all zeros ρ = β + iγ of

∏
χ L(s, χ).

Since the set of zeros of
∏

χ L(s, χ) is closed under complex conjugation, this also means that

(2.8) |TM ± γ| ≫ (φ(q) log(qM))−1 for all zeros ρ = β + iγ of
∏
χ

L(s, χ).

With the contour ωM as in Figure 1, we claim that

(2.9)
L′(zν, χ)

L(zν, χ)
≪ φ(q) log2(qM), uniformly in q ≥ 3, χ mod q, M ≥ 2(1 + ν + ν|s|), z ∈ ωM .

If Re(z) ≥ 2/ν, this follows from the Dirichlet series of L′(zν, χ)/L(zν, χ). If Re(z) ∈ [−1/ν, 2/ν],
then z must lie on the two horizontal segments in ωM , so that by (2.8), we have |zν − ρ| ≥
|Im(z)ν − γ| = |TM ± γ| ≫ (φ(q) log(qM))−1 for any zero ρ = β + iγ of

∏
χ L(s, χ). This gives

(2.9) by Lemma 2.1(2) and (4). Lastly if Re(z) ≤ −1/ν, then Lemma 2.1(3) establishes (2.9).

Now for any M ≥ 2ν|s| and any z ∈ ωM , we have |z − s| ≥ |z| − |s| ≥ |z|/2 ≥ M/2ν. As such∫
ωM

|dz|/|z − s|2 ≪ν,s

∫∞
M/2ν

dt/t2 + (M/2ν)−2 ·M ≪M−1, so that (2.3) and (2.9) yield

(2.10) lim
M→∞

∫
ωM

ξν(z−s) − ξ2ν(z−s)

(z − s)2
· F

′(zν)

F(zν)
dz = 0.

Using the residue theorem to shift contours from the vertical line in (2.7) to ωM , and then letting
M → ∞, we thus find from (2.10), (2.7) and (2.3) that
(2.11)

ν
∑
n≤ξ2

ϱ(n)Λ(n)

nzν
τ(n) log ξ =

Res
z=s

+ Res
z=1/ν

+
∑

ρ:
∏

χ L(ρ,χ)=0

Res
z=ρ/ν

 ξν(z−s) − ξ2ν(z−s)

(z − s)2
· F

′(zν)

F(zν)
.

Finally, using (2.3) to compute the above residues, we obtain the proposition. For instance, note
that if ξρ−νs ̸= 1 for some ρ above, then (2.3) shows that z = ρ/ν is a simple pole of the function on
the right of (2.11) of residue ν(ξρ−νs− ξ2(ν−ρs))(ρ− νs)−2

∑
χ αχ·{multiplicity of ρ in L(s, χ)}. If

ξρ−νs = 1, then z = ρ/ν is a removable singularity, so we can still give the same expression (whose
value is zero) for its “residue”. The residue at z = 1/ν can be computed analogously, and the
residue at z = s (which is always necessarily a simple pole) is equal to −ν(log ξ)F ′(sν)/F(sν). □

Figure 1. The Contour ωM
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We will now use the series representation in Proposition 2.2 to give a suitable bound on F ′(sν)/F(sν).
A crucial input will be provided the following zero density estimate. In what follows, we define

N(θ, t) :=
∑

χ mod q

∑∗

ρ: L(ρ,χ)=0
θ≤β≤1, |γ|≤t

1.

Lemma 2.3. We have N(θ, t) ≪ (qt)3(1−θ), uniformly in q ≥ 3, θ ∈ [1/2, 1], and t ≥ 1.

This may be found in work of Heath–Brown and Jutila. We now state the bound alluded to above.

Proposition 2.4. Uniformly in q ≥ 3, and in complex numbers s satisfying σ ≥ ν−1(1−c0/2Lq(t)),∣∣∣∣F ′(sν)

F(sν)
+

αχ0

sν − 1
− αχe

sν − ηe

∣∣∣∣ ≪ λq Lq(t).

Proof. Most of the argument consists of carefully bounding the different components of the right
of (2.6). First, for all n ≤ ξ2, we have |nsν | = nσν ≥ n1−c0/2Lq(t) ≥ n exp(−2 log ξ/2Lq(t)) ≫ n, so
that the first sum on the right in (2.6) is ≪ λq

∑
n≤ξ2 Λ(n)/n≪ λq Lq(t) by Mertens’ Theorem.

Next, since the trivial zeros of any L(s, χ) are simple, the total contribution of all zeros {−r/ν}r∈N
to the right of (2.6) equals (log ξ)−1

∑
r≥1

(∑
χ: χ(−1)=(−1)r αχ

)
(ξ−(r+νs) − ξ−2(r+νs))(r + νs)−2.

Since the sum on χ is
∑

χ αχ(1 + χ(−1)(−1)r)/2 = (ϱ(1) + ϱ(−1))/2, it follows that the last

expression has size ≪ λq(log ξ)
−1
∑

r≥1 ξ
−(r+νσ)(r + νσ)−2 ≪ λq Lq(t)−1

∑
r≥1 r

−2 ≪ λq Lq(t)−1.

Now, we observe that |(ξθ−νs − ξ2(θ−νs))(θ − νs)−2(log ξ)−1 − (νs − θ)−1| ≪ Lq(t) uniformly
in θ ∈ (0, 1] and s as in the proposition. This follows by a straightforward crude bounding if
|θ − νs| > (log ξ)−1, and by the formula ξθ−νs = 1 − (θ − νs) log ξ + O

(
(θ − νs)2(log ξ)2

)
if

|θ − νs| ≤ (log ξ)−1. Collecting all the observations made so far, we see that this proposition
would follow from (2.6), once we show that uniformly in all s with σ ≥ ν−1(1− c0/2Lq(t)),

(2.12)
1

Lq(t)
∑
χ

|αχ|
∑∗

ρ: L(ρ,χ)=0
0≤β≤1, ρ̸=ηe

ξβ−νσ + ξ2(β−νσ)

(β − νσ)2 + (γ − νt)2
≪ λqLq(t).

To show this, we start by bounding the entire expression above by S1 + S2 + S3 + S4, where

• S1 denotes the total contribution of all ρ having β ≤ 1/2, so that

S1 =
1

Lq(t)
∑
χ

|αχ|
∑∗

ρ: L(ρ,χ)=0
0≤β≤1/2

ξβ−νσ + ξ2(β−νσ)

(β − νσ)2 + (γ − νt)2
.

• S2 denotes the total contribution of all ρ having β ∈ (1/2, 1] and |γ| ≤ 2|tν|+ 1.

• S3 denotes the total contribution of all ρ having β ∈ (1/2, σν] and |γ| > 2|tν|+ 1.

• S4 denotes the total contribution of all ρ having β ∈ (σν, 1].

For any ρ appearing in S1, we have β − νσ ≤ 1/2 − (1 − c0/2Lq(t)) ≤ −1/2 + 1/2 log q ≤ −1/3,
so that (β − νσ)2 + (γ − νt)2 ≥ (1 + (γ − νt)2)/9. Hence (1.1) and Lemma 2.1(1) yield S1 ≪
λq ξ

1/2−νσLq(t)−1
∑

χ

∑
ρ (1 + (γ − νt)2)−1 ≪ λq · qξ1/2−νσ ≪ λq · qξ−1/2 · ξc0/2Lq(t) ≪ λq.
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For any ρ appearing in S3, we have β − νσ ≤ 0 and |γ − tν| ≥ |γ| − |tν| ≥ |γ|/2. Thus by (1.1),

S3 ≤
8λq
Lq(t)

∑
χ

∑∗

ρ̸=ηe: L(ρ,χ)=0
|γ|>2|tν|+1, 1/2<β≤min{σν,1}

ξβ−νσ · |γ|−2.

Partitioning the interval (1/2,min{σν, 1}] into R := ⌊log ξ/2⌋ equally spaced intervals, we obtain

(2.13) S3 ≤
8λq
Lq(t)

R∑
r=1

ξ1/2+rµ0/R−νσ
∑
χ

∑∗

ρ ̸=ηe: L(ρ,χ)=0, |γ|>2|tν|+1
1/2+(r−1)µ0/R<β≤ 1/2+rµ0/R

|γ|−2,

where µ0 := min{σν, 1} − 1/2. Now the inner double sum (on χ and ρ) above is at most

(2.14)

∫ ∞

2|tν|+1

dN
(

1
2
+ (r−1)µ0

R
, u
)

u2
≪
∫ ∞

2|tν|+1

N
(

1
2
+ (r−1)µ0

R
, u
)

u3
du≪ q3(1/2−(r−1)µ0/R)

where we have used the Stieltjes integration by parts and Lemma 2.3. The last expression above is
≪ ξ1/4−(r−1)µ0/2R ≪ ξ1/4−rµ0/2R, as µ0 ≤ 1/2, ξ ≥ q6 and R ≥ log ξ/3. Inserting these into (2.13),

we get S3 ≪ λq Lq(t)−1 ξ3/4−νσ
∑R

r=1 ξrµ0/2R ≤ λq Lq(t)−1 ξ3/4−νσ ·Rξµ0/2 ≪ λq ξ
1−νσ ≪ λq.

Next, for any ρ counted in S2, we have |γ| ≤ 2|tν|+1 and ρ ̸= ηe, so that β ≤ 1−c0/ log(q(|γ|+1)) ≤
1− c0/ log(2q(|tν|+ 1)). Since νσ ≥ 1− c0/2Lq(t), we get

νσ − β ≥ c0

(
1

log(2q(|tν|+ 1))
− 1

2 log(q(|tν|+ 1))

)
=

c0
Lq(t)

(
1− log 4

log(2q(|tν|+ 1))

)
≥ c0

10Lq(t)
.

Hence (β − νσ)2 ≫ Lq(t)−2. Proceeding as in (2.14) (via Lemma 2.3 and integration by parts),

S2 ≪ λq Lq(t)
∑
χ

∑∗

ρ̸=ηe: L(ρ,χ)=0
1/2<β≤1, |γ|≤2|tν|+1

ξβ−νσ ≤ λq Lq(t)
(
−
∫ 1

1/2

ξθ−νσ dN(θ, 2|tν|+ 1)

)

≤ λq Lq(t)
(
ξ1/2−νσN(1/2, 2|tν|+ 1) + log ξ

∫ 1

1/2

ξθ−νσN(θ, 2|tν|+ 1) dθ

)
≪ λq Lq(t)

(
ξ3/4−νσ + log ξ

∫ 1

1/2

ξ(1+θ)/2−νσ dθ

)
≪ λq Lq(t) ξ1−νσ ≪ λq Lq(t).

For any ρ (̸= ηe) in S4, we have 1 − c0/ log(q(|γ| + 1)) ≥ β > σν ≥ 1 − c0/2Lq(t), giving
|γ| > q(|tν|+1)2 − 1. Thus also |γ− tν| ≥ |γ| − |tν| ≥ |γ|/2. Proceeding exactly as we did for S3,

S4 ≪ λq ξ
2(1−νσ)

Lq(t)
∑
χ

∑∗

ρ:L(ρ,χ)=0
σν<β<1, |γ|>q(|tν|+s1)2−1

|γ|−2 ≪ λq
Lq(t)

∫ ∞

q(|tν|+1)2−1

dN(σν, u)

u2
≪ λq.

Collecting all these estimates establishes (2.12), completing the proof of the proposition. □

The following is an important consequence of (2.4) and Proposition 2.4.

Corollary 2.5. We have H̃′(s)/H̃(s) ≪ λq Lq(t) uniformly in complex s having σ ≥ 1−c0/2Lq(t).
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