THE LANDAU-SELBERG-DELANGE METHOD FOR PRODUCTS OF
DIRICHLET L-FUNCTIONS

AKASH SINGHA ROY

1. INTRODUCTION

We write complex numbers s as o + it, where ¢ = Re(s) and ¢ = Im(s). Fix ¢o € (0,1/3) such
that for any integer ¢ > 3, the product [] .4, L(s,X) has no zero in the region {o +it : o >
1—co/log(q(|t|+1))} except at most a simple real zero n. (the “Siegel zero”) associated to a real
character x. (the “exceptional character”). We also fix any v > 0 and &9 € (0, 1], and define

L,(t) =log(q(|tv| + 1)), D(co) ={o+it:0 >1—co/L4(t)}, and

Y ax(@)], Y Bux(a)

x
Writing oy = 37 nodq @ Lu=x = D ymodq @ (07 2 qmoaq X(@)1(a) and interchanging
sums, we obtain the following important bound

(1.1) lay| < A, and |By| < A, for all characters xy mod gq.

9

A¢ = 1 4+ max max{

a mod q

Let {a,};2, be a sequence of complex numbers, {ay }y mod ¢ b€ a set of complex numbers (indexed
at the Dirichlet characters x mod ¢), and © : Rsg — Rsy be a non-decreasing function. We
say that {a,}>, has property P({ay}y,co, ) if the Dirichlet series Y -  a,/n® is of the form
F(sv)G(s) for all complex numbers s having o > 1/, where F(sv) == [], 04, L(s:Xx)*, and
where G(s) is a function that analytically continues into the region D(¢y) and satisfies |G(s)| < Q(?)
therein. We shall also say that a positive integer N is good (with respect to {a,}22 ) if for any
constant ¢ > 0, there exists a constant x.(N) > 0 depending only on ¢ and N such that
.Tl/V
Z lan| < KJ(C,N)-W for all = > 2.

r<n<z+cz/(logx)N

Our first main result is the following:

Theorem 1.1. Let {a,}°, be a sequence of complex numbers. We say that such that the Dirichlet
series Yy~ an/n® has property P({ay }y, co, ). Then uniformly in x > 4, in good N > 0, and in
moduli ¢ > 4 satisfying (1 — n.)logx > 3v, we have

/v 1 K
2~ fogay=o 2 e

n<z 0<j<N F(O‘XO - ]) (lOg x)j

1+ . —2K
<< (4)\(] log q))\q+2K . HC(N>$1/V {Qgr(T)<lOgT) Qgr(l/y)<1 773) F(N + 2 + |OéXOD } '

T (2(1 - T]e) log l’/]_4].V)N+27Re(O‘Xo)
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2. KEY ANALYTIC INPUTS: LOGARITHMIC DERIVATIVES AND AUXILIARY FUNCTIONS

For any x mod g, the function LogL(sv, x) = >_, ., Xx(p")/rp"" defines an analytic logarithm of
L(sv, x) on the region {s: o > 1/v}. Hence, the function F(sv) is analytic on {s: o > 1/v}, and
(2.1)

F(sv) = H L(sv, x)™ = exp (Z a, LogL(sv, X)) = exp (Z Tplrsy Z OCXX@T)) ifo>1/v.

X X p,r>1

We now make it clear how our functions can be analytically continued into regions of interest. In
what follows, anything involving the Siegel zero 7. is to be ignored if 7. doesn’t exist.

2.1. Analytic Continuations. Since the functions L(sv, xo)(s—1/v), L(sv, x.)(s—n./v)~!, and
{L(57, X) Fxsxo.xe mod ¢ &l continue analytically into nonvanishing functions on D(cp), they have
(unique) analytic logarithms 7*(s, x0), 7 (s, Xe), and {T(S, X) } x£xo.xe mod ¢ 01 D(¢o) satisfying

9 r 2 1 9 (" 2,
T* <_JXO> - Z XO(Z;T,) + In <_ - _) ) 7—* (_7Xe) - Z X (]2?7") —In (_ - /)7_> )
14 o1 rp 14 14 14 b1 rp 14 v

and T(2/v,x) = >, .51 X(p")/rp*" for all other x. (Thus 7*(s, xo) is analytic on D(co) and satisfies
eT"5x0) = [(sv,x0)(s — 1/v) therein, etc.) Comparing derivatives, we see that the functions

(2.2) T (s,x0) == T"(s,x0) — log (3 - %) and T (s,xe) = T"(s,xe) + log (5 — E)

14

define unique analytic continuations of the functions LogL(s, xo) and LogL(s, x.), into the regions
D(co) \ (—o0,1/v] and D(cp) \ (—o0,n./v], respectively. (Here log z is the principal branch of the
logarithm, so log(s — 1/v) is analytic on C\ (—o0,1/v].) From this discussion, we see that the
function exp(3>_, o, T (s,x)) = [, exT($X) defines a unique analytic continuation of F(sv) in

(2.1) into D(cp) \ (—oo,1/v]; hence, F(sv) = exp(d_, a,T(s,x)) for all s in this region.

Note also that by the first equality in (2.1) and by analytic continuation, we may write
(2.3)
F/ L/ ,
(sv) _ ZO‘X (sv,x)
F(sv) L(sv, x)

for all s # 1/v s.t. s # p/v for any complex zero p of HL(S, X)-
X
This relation is consistent with the analytic continuation of F(sv) in the previous paragraph.

We will also need the following two auxiliary functions: By the above discussion (especially (2.2)),

o The function H(s) = exp (ay,T* (5. X0) + @, T*(5. Xe) + Ty, 02T (5.%)) amalyti-
cally continue the function F(sv)(s — 1/v)*o(s —n./v)”“xe into the region D(co).

e The function H(s) = s lexp (axoT*(s,Xo) + D ko axT(s,X)> analytically continues
the function s™'F(sv)(s — 1/v)*o into the region D(cy) \ (—00, n./v].

The reader may now forget all the 7 and 7*. All that needs to be remembered from this subsection
are (2.1) and (2.3), that F(sv) continues analytically into D(cg) \ (—o0,1/v], and that

(2.4) H(s) = F(sv)(s — 1/v)%0 (s — 5o /1)~ xe for all s € D(cy),
(2.5) H(s) = s ' F(sv)(s — 1/v)™o for all s € D(cp) \ (—00,ne/V],

with H(s) and #H(s) being analytic on D(cg) and D(cp) \ (—00, n./v], respectively.
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2.2. Analysis of Logarithmic Derivatives. To give suitable bounds on F(sv), we will first
analyze its logarithmic derivative. To this end, the following known results on Dirichlet L-functions
will be useful. In what follows, we write p = B 4+ 2y where 8 = Re(p) and v = Im(p). We
denote by Z:: Lpx)=0 & sum over all zeros p of L(s, x) counted with appropriate multiplicity.

Lemma 2.1. The following hold uniformly in ¢ > 2 and in all Dirichlet characters x mod q.
(1) Uniformly in all real t, we have Z* < log(q([t] + 1)).

1 — 2
p: L(p,x)=0 + (t 7)
0<B<1
(2) Uniformly in all complex s satisfying o € [=1,2], |t| > 2, and t # v for any of the zeros
, L'(s, * 1
p= B +in of L(s,x), we have X 5™ L gaog(g(1t] 4+ 1)),
L(s, x) Loy STP

0<B<1, [y—tI<1
(3) We have L'(s,x)/L(s,x) < log(q|s|), uniformly in all complex s satisfying o < —1 and lying
outside the disks of radius 1/4 about the trivial zeros of L(s,x).

(4) Uniformly in real t & (—1,1), we have #{p: 0 < B <1, |v—t| <1, L(p, x) = 0} < log(q[t]).
In most standard texts, these results are stated and proved only for primitive characters, however
the generality above will be helpful here. (Section 8 discusses this lemma for general xy mod ¢.)

We now give a certain (absolutely convergent) series expansion for the logarithmic derivative of

F(sv) in terms of the zeros of the L-functions, with coefficients that are easy to control.

Proposition 2.2. For any s € C satisfying s # 1/v and s # p/v for any zero p of [, L(s,X),

(2.6)
p—vs _ ¢2(p—vs)
S Z a, (€ § ).

f’ (sv) Z o(n (n) — axg(flf”s—
omte i (p—ws)tlogg

£2(1 vs)

F(sv) (1 —vs)?log&

where € = %1 o(n) =33 |4, oy X(n), and 7(n) = Tnce + lecpce (2 —logn/logé).

n<g2

Proof. Our starting point is the identity fbligo y?/2*dz = 1,51 - 2milogy which holds for any
b,y > 0. To see this, consider any R > 2, apply the residue theorem to the contour consisting
of the vertical segment [b — iR, b + iR] and the major arc (respectively, minor arc) of the circle
centered at the origin passing through b+ iR if y > 1 (resp. y < 1), and then let R — oo.

The Dirichlet series of L'(s, x)/L(s, x) and (2.3) give F'(zv)/F(2v) = 5, o(n)A(n)/n* for all
z with Re(z) > 1/v. We now claim that for all s as in the statement of the proposition,

1 %+\s|+ioo 51/2 s) §2V(z s) ]:/( Q
% 2 1 |s]—ico (Z - 8)2 ‘F( Z

(2.7) (n)log¢.

n<g2

Indeed by the identity in the first paragraph of the proof, (2.7) is immediate if F'(zv)/F(zv) were
replaced by any finite truncation ) _, o(n)A(n)/n*” of its aforementioned Dirichlet series (for
any Y > £9). Moreover by the same Dirichlet series, the absolute value of the integrand above is at
most 2), &1 (3°  A(n)/n?) |z—s|~2, which is an L'-function since fz/VHSHZOO |dz|/]z—s]? < oo

2/v+|s|—ico
and >~ A(n)/n* < 1. Thus (2.7) follows by the Dominated Convergence Theorem.
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We will now shift contours. For this, note that for any M > 2, the number of zeros of Hx L(s,x)
in the rectangle [0,1] x (M, M + 1] is < ¢(q)log(¢M) by Lemma 2.1(4). Hence there exists
Tar € (M, M +1] satisfying [Ty — | > (¢(q) log(¢M))~" for all zeros p = 3 + iy of [T, L(s,x).
Since the set of zeros of Hx L(s, x) is closed under complex conjugation, this also means that

(2.8) [T £ 7] > (¢(q) log(qgM)) ™" for all zeros p = 3 + iy of H L(s, x)-
X
With the contour wy, as in Figure 1, we claim that

L/
(2.9) M < ¢(q)log?(¢M), uniformly in ¢ > 3, y mod g, M > 2(1 +v + v|s|), 2 € wy.

L(zv,x)
If Re(z) > 2/v, this follows from the Dirichlet series of L'(zv, x)/L(zv, x). If Re(z) € [-1/v,2/v],
then z must lie on the two horizontal segments in wys, so that by (2.8), we have |zv — p| >
[Tm(2)v — 7| = |Tar £ 7| > (p(g) log(¢M))~" for any zero p = 4 iy of [, L(s,x). This gives
(2.9) by Lemma 2.1(2) and (4). Lastly if Re(z) < —1/v, then Lemma 2.1(3) establishes (2.9).

Now for any M > 2v|s| and any z € wys, we have |z — s| > |z| — |s| > |2]|/2 > M/2v. As such
Loy, 1d2l/1z = s < f]\;o/zy dt/t?* + (M/2v)™2- M < M~!, so that (2.3) and (2.9) yield

) é-u z—8) 521/ z—8) .FI(ZV) B
(2.10) ]\/l[gnoo / (2 —9) F(zv) dz =0

Using the residue theorem to shift contours from the vertical line in (2.7) to wys, and then letting
M — oo, we thus find from (2.10), (2.7) and (2.3) that

(2.11)
Q é‘l/(Z—S) _ 521/(2—5) f/(ZV>
v lo Res + Res + Res : .
; ) g£ z= z=1/v ) Z _ z=p/v (Z — 8)2 .F(ZV)
n<é e TL, L(px)=0

Finally, using (2.3) to compute the above residues, we obtain the proposition. For instance, note
that if £#77% # 1 for some p above, then (2.3) shows that z = p/v is a simple pole of the function on
the right of (2.11) of residue (&% — £2/=r9))(p — vs) 2 > o {multiplicity of p in L(s, x)}. If
£P7vs =1, then z = p/v is a removable singularity, so we can still give the same expression (whose
value is zero) for its “residue”. The residue at z = 1/v can be computed analogously, and the
residue at z = s (which is always necessarily a simple pole) is equal to —v(log &) F'(sv)/F(sv). O

FIGURE 1. The Contour wy,
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We will now use the series representation in Proposition 2.2 to give a suitable bound on F'(sv)/F(sv).
A crucial input will be provided the following zero density estimate. In what follows, we define

N@6,t) = > Yoo

x mod g p: L(p,x)=0
0<BL1, |v|<t

Lemma 2.3. We have N(0,t) < (qt)*9, uniformly in ¢ >3, 0 € [1/2,1], and t > 1.
This may be found in work of Heath-Brown and Jutila. We now state the bound alluded to above.

Proposition 2.4. Uniformly in q > 3, and in complex numbers s satisfying o > v (1—co/2L,(t)),
F'(sv) Yxo e

F(sv) su—1  sv—n.

< A Ly(1).

Proof. Most of the argument consists of carefully bounding the different components of the right
of (2.6). First, for all n < &2, we have |n®’| = n > n'=0/2£4®) > pexp(—2log/2L,(t)) > n, so
that the first sum on the right in (2.6) is < Ay Y2, .2 A(n)/n < Ay Ly(t) by Mertens” Theorem.

Next, since the trivial zeros of any L(s, x) are simple, the total contribution of all zeros {—r/v},.en
to the right of (2.6) equals (log&)™" >° -, (Zx MD)=(—1yr O ) (e=0rFvs) — ¢=2r4vs)) (p 4 ps) 2,
Since the sum on x is > oy (1 + x(—=1)(=1)")/2 = (e (1) o(— 1))/2 it follows that the last
expression has size < Ag(log &)™ Y0 o) £ (r+v0) 72 K Ay L(t) 71 Y00y 772 K A Ly(8)

Now, we observe that [(£97% — £20=v9)(9 — vs)~2(logé)™t — (vs — )7 < L,(t) uniformly
in € (0,1] and s as in the proposition. This follows by a straightforward crude bounding if
0 — vs| > (log&)™!, and by the formula &%~ = 1 — (0 — vs)log& + O((6 — vs)?(log€)?) if
160 — vs| < (log&)~!. Collecting all the observations made so far, we see that this proposition
would follow from (2.6), once we show that uniformly in all s with o > v=1(1 — ¢o/2L,(1)),

N 5671/0' _}_52(571/0')
(2.12) < ALy(D).
. L%()O (B —vo)?+ (v —vt)? o
0<B<1, p#ne

To show this, we start by bounding the entire expression above by S; 4+ Sy + S5 + Sy, where

e S5; denotes the total contribution of all p having § < 1/2, so that
5,8—110' _|_£2(ﬁ—1/0')

1 *
o2l 3 GG

p: L(p:x)=0
0<p<1/2

e S, denotes the total contribution of all p having § € (1/2,1] and |y| < 2|tv| + 1.
e S3 denotes the total contribution of all p having 8 € (1/2,0v] and || > 2|tv| + 1.
e 5S4 denotes the total contribution of all p having 8 € (ov, 1].

For any p appearing in Sy, we have f —vo < 1/2 — (1 — ¢/2L,(t)) < —1/2+1/2logq < —1/3,
so that (8 —vo)? + (y — vt)? > (1 + (v — vt)?)/9. Hence (1.1) and Lemma 2. 1( ) yield S; <
Ng 2L, 0, (L (y = wt)?) 7 Ay - g€ P77 K A - g g0 <
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For any p appearing in S3, we have § —vo < 0 and |y — tv| > || — |[tv| > |7|/2. Thus by (1.1),

8A *
S q B—vo —2‘
D> > g7 |

X p#ne: L(p,x)=0
[v|>2|tv|+1, 1/2<B<min{ov,1}

Partitioning the interval (1/2, min{ov, 1}] into R = |log&/2]| equally spaced intervals, we obtain

8)\ - T —Vo * -
(2.13) Sy < Eq(z) Z g1/2+rio/R Z Z |72,
r=1

X p#ner Lpx)=0, |y[>2[tv|+1
1/24+(r—1)puo/R<B<1/24ruo/R

where pg = min{ov, 1} — 1/2. Now the inner double sum (on x and p) above is at most

o AN (B ) e N (3 )
(2.14) / <</ - du < q3(1/2—(r—1)u0/R)
2 2ltv|+1 u

[tv]+1 u?
where we have used the Stieltjes integration by parts and Lemma 2.3. The last expression above is
<L YA Dmo /2R o (1/A=mh0/2R ag 110 < 1/2, € > ¢% and R > log £/3. Inserting these into (2.13),
we get Sy < A\, L,(t) 7t &34 Zfil Erio/2R <\ L, (8) 7T E3/47ve L ReHo/2 < )\ 1 <

Next, for any p counted in Sy, we have |y| < 2|tv|+1 and p # 7., so that § < 1—co/log(q(|v[+1)) <
1 —¢o/log(2q(|tv| + 1)). Since vo > 1 — co/2L,(t), we get

ya—ﬁ>c( 1 B 1 )_ o (1_ log 4 )> o
= " \log(2q(jtv| + 1)) 2log(q(ltv[+1))) — L,(t) log(2q([tv] +1)) ) — 10L,(t)
Hence (8 — vo)? > L,(t)"2. Proceeding as in (2.14) (via Lemma 2.3 and integration by parts),

1

77 dAN(0, 2]tv| + 1))

1/2

So < N Lo(t) Y > AP W () (—

p#ne: L(p,x)=0
1/2<B<1, |y|<2ftv|+1

1
< AN Ly(t) (51/2”” N(1/2,2]tv| + 1) + logé& /1/2 7Y N(9, 2]tv| + 1) d0)

1
<K Ag Ly(t) (53/4w + log¢ f(HG)/QiW d9) K Ag Ly(t) &7 < A Lq(1).

1/2

For any p (# n.) in Sy, we have 1 — ¢o/log(q(|y| + 1)) > > ov > 1 — ¢y/2L,(t), giving
17| > q(|tv| +1)* = 1. Thus also |y —tv| > || — |[tv| > |y]/2. Proceeding exactly as we did for Ss,

A, E207ve) . A o dN(ov,u)
Sy < —— |7|‘2<<—q/ —— <L A\,
L,(t) XX: p: L%;):O L,(1) q(ftv|+1)2—1 u? !

ov<pB<l, |y|>q(jtv|+s1)?—1
Collecting all these estimates establishes (2.12), completing the proof of the proposition. U

The following is an important consequence of (2.4) and Proposition 2.4.

Corollary 2.5. We have H'(s)/H(s) < Ay L4(t) uniformly in complex s having o > 1—co/2L,(t).
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