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Abstract. We obtain best possible analogues of the Siegel–Walfisz Theorem for the value
distributions of large classes of multiplicative functions and for the joint distributions of fami-
lies consisting of such functions. We extend a criterion of Narkiewicz for such families to give
new uniform results that are essentially optimal in the range and arithmetic restrictions on the
modulus as well as in most parameters and hypotheses. This also significantly generalizes and
improves upon previous work done for a single such function in specialized settings. Further-
more, we reveal some surprising phenomena leading to failure of equidistribution. Our results
have applications to large classes of interesting (integer-valued) multiplicative functions, such
as Euler’s totient φ(n), the sum-of-divisors σ(n), the coefficients of the Eisenstein series, etc.,
and to the joint distribution of collections/families consisting of such functions. For instance,
an application of our results shows that for any fixed ϵ > 0, the functions φ(n) and σ(n) are
jointly asymptotically equidistributed among the reduced residue classes to moduli q coprime
to 6 varying uniformly up to (log x)(1−ϵ)α(q), where α(q) :=

∏
ℓ|q(ℓ − 3)/(ℓ − 1): This is the

best possible result for the joint distribution of (φ, σ) to a single varying modulus. Our results
also give interesting consequences for the families (σ, σ3), (φ, σ, σ2), (φ, σ, σ2, σ3) and so on.

One of the central themes behind our arguments is a certain “mixing” idea that can be inter-
preted as a Markov chain mixing phenomenon, however we carry out this idea using methods
from the “anatomy of integers” in conjunction with classical as well as “pretentious” analytic
arguments. In addition to these, our arguments involve counting solutions to simultaneous
polynomial congruences in a large number of variables (that can be thought of as multiplica-
tive analogues of the circle method), and our methods blend character sum estimates with
linear algebra and module theory, commutative algebra, algebraic number theory, as well as
arithmetic and algebraic geometry. These ideas have been useful in other problems as well.

1. Introduction

We say that an integer-valued arithmetic function g is uniformly distributed (or equidistributed)
modulo q if #{n ≤ x : g(n) ≡ b (mod q)} ∼ x/q as x→ ∞, for each residue class b mod
q. This definition generalizes naturally to families of arithmetic functions, and has been well-
studied for (integral-valued) additive functions, – with work of Delange [10], [11] characterizing
when a family of such functions is equidistributed to a fixed modulus q. These results have
also been partially extended in [37], [38], [1] and [46], where the modulus q itself has been
allowed to vary up to a certain threshold depending on the stopping point x of inputs.

However, for multiplicative functions, there are indications that uniform distribution is not
the correct notion to consider. For instance, it can be shown that the Euler totient function
φ(n) is almost always divisible by any fixed integer q, and hence is not equidistributed modulo
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any q > 1. Motivated by this, Narkiewicz in [27] introduces the notion of weak uniform
distribution: Given an integer-valued arithmetic function f and a positive integer q, we say
that f is weakly uniformly distributed (or weakly equidistributed or WUD) modulo q if there are
infinitely many positive integers n for which gcd(f(n), q) = 1, and if

#{n ≤ x : f(n) ≡ a (mod q)} ∼ 1

φ(q)
#{n ≤ x : gcd(f(n), q) = 1}, as x→ ∞,

for each coprime residue class a mod q. This definition extends naturally to families of arith-
metic functions: we say that the integer-valued arithmetic functions f1, . . . , fK are jointly weakly
equidistributed (or jointly WUD) modulo q if there are infinitely many n for which gcd(f1(n)
· · · fK(n), q) = 1, and if for all coprime residue classes a1, . . . , aK mod q, we have

(1.1)

#{n ≤ x : ∀i ∈ [K], fi(n) ≡ ai (mod q)} ∼ 1

φ(q)K
#{n ≤ x : gcd(f1(n) · · · fK(n), q) = 1}

as x→ ∞. (Here and below, [K] denotes the set {1, . . . , K}.)

The phenomenon of weak equidistribution has drawn a lot of attention for specific as well
as for general classes of multiplicative functions. Narkiewicz [27] shows that φ(n) is weakly
equidistributed precisely to those moduli q that are coprime to 6, while Dence and Pomerance
[12] study the distribution of φ(n) in residue classes modulo 3 and 12). Śliwa [49] shows that
the sum of divisors function σ(n) =

∑
d|n d is weakly equidistributed mod q exactly when q

is not a multiple of 6. Generalizations of Śliwa’s result to Fourier coefficients of Eisenstein
series (more generally, the functions σr(n) :=

∑
d|n d

r), as well as to families of such functions,

has been studied in great depth by Narkiewicz, Rayner, Śliwa, Dobrowolski, Fomenko, and
others; see [27], [49], [15], [28], [29], [32], [30], [31, Theorem 6.12], [40], [41]. In fact in [27,
Theorem 1], Narkiewicz gives a general criterion for deciding weak equidistribution for a single
“polynomially-defined” multiplicative function f , one that can be controlled by the values of
polynomials at the first few powers of all primes. While the exact statement requires some set-
up, the general flavor of the criterion is that such a function f is weakly equidistributed modulo
a fixed q precisely when for every nontrivial Dirichlet character mod q that acts trivially on a
special subgroup of the unit group mod q, a certain “local factor” (or Euler factor) associated to
this Dirichlet character vanishes. Narkiewicz dedicates a significant portion of his monograph
[31] to give more explicit sufficient conditions that guarantee weak uniform distribution, and
to obtain algorithms characterizing all the moduli to which a given “polynomially-defined”
multiplicative function is weakly equidistributed.

In all these results, the modulus q has been assumed to be fixed. A natural question of some
interest is whether one can allow q to vary with our stopping point x. This general problem
of investigating equidistribution in residue classes to varying moduli has been ardently studied
in various contexts, such as for smooth numbers and mean values of multiplicative functions.
In our context, a concrete starting model is the celebrated Siegel–Walfisz Theorem, according
to which for any fixed K0 > 0, the primes up to any x are weakly equidistributed uniformly
to moduli q ≤ (log x)K0 . So one might ask: Can we find analogues of the Siegel–Walfisz
theorem for the value distributions of multiplicative functions or (more generally) for the joint
distributions of a family of multiplicative functions? To this end, given a constant K0 > 0,
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we shall say that the functions f1, . . . , fK : N → Z are jointly weakly equidistributed (or jointly
WUD) mod q, uniformly for q ≤ (log x)K0 , if:

(i) For every such q,
∏K

i=1 fi(n) is coprime to q for infinitely many n, and

(ii) The relation (1.1) holds as x → ∞, uniformly in moduli q ≤ (log x)K0 and in coprime
residue classes a1, . . . , aK mod q. Explicitly, this means that for any ϵ > 0, there exists
X(ϵ) > 0 such that the ratio of the left hand side of (1.1) to the right hand side lies in
(1− ϵ, 1 + ϵ) for all x > X(ϵ), q ≤ (log x)K0 and coprime residues a1, . . . , aK mod q.

If K = 1 and f1 = f , we shall simply say that f is weakly equidistributed (or WUD) mod q,
uniformly for q ≤ (log x)K0 .

The question of weak equidistribution to varying moduli seems to have been first studied in
[23], [36] and [38], which made some partial progress towards obtaining a uniform analogue of
Narkiewicz’s aforementioned criterion for a single “polynomially-defined” multiplicative func-
tion. However, the settings in these papers were highly special instances of the setting in
Narkiewicz’s original criterion in [27] (in the sense that they imposed several additional re-
strictions), so much so that they could not be used to obtain satisfactory uniform analogues
of the weak equidistribution results on σr(n) alluded to above.

As a special case of our results in this manuscript, we are able to extend Narkiewicz’s criterion
in [27] in its full generality, in the sense that our results do not require any additional
restrictions beyond those which can be proven to be necessary. Applications of our main
theorems also extend the aforementioned works of Narkiewicz, Rayner, Śliwa, Dobrowolski,
Fomenko and others in the best possible manner (see the discussion following the statement

of Theorem 2.5). For instance, we get all the following uniform analogues of Śliwa’s result
in [49]: The sum of divisors function σ(n) is weakly equidistributed uniformly to all odd
moduli q ≤ (log x)K0 as well as to all even q not divisible by 3 that are either no more than
a small power of log x or are squarefree without too many distinct prime factors. In addition,
uniformity is restored to all (resp. to squarefree) even q ≤ (log x)K0 that are not multiples of
3, provided we restrict to inputs n having six (resp. four) large prime factors counted with
multiplicity. By examples constructed in [47], all these restrictions are optimal.

All of these results and improvements are only for a single multiplicative function. In [29],
Narkiewicz generalizes his criterion from [27] to decide joint weak equidistribution for families
of “polynomially defined” multiplicative functions to a fixed modulus q; he uses this generalized
criterion in [28] to characterize those fixed q to which the Euler totient φ(n) and sum of divisors
σ(n) are jointly weakly equidistributed. However, several arguments in the aforementioned
papers [23, 36, 38] investigating varying-modulus analogues of his previous criterion are all
strictly constrained to a single multiplicative function and do not generalize to families. In
this manuscript, we extend Narkiewicz’s general criterion in [29] for families of multiplicative
functions to a single varying modulus q, and give new results that are best possible in the
range of uniformity and arithmetic restrictions on q.

The qualitative summary of our main results is as follows. Under certain (provably) unavoid-
able conditions, a given family f1, . . . , fK of polynomially-defined multiplicative functions is
jointly weakly equidistributed exactly to those moduli q that satisfy Narkiewicz’s criterion,
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uniformly in q varying up to small powers of log x, where these powers are all essentially op-
timal as well. In addition, weak equidistribution is restored in the full “Siegel-Walfisz range”
q ≤ (log x)K0 provided we restrict to inputs n having sufficiently many large prime factors. The
threshold for “sufficiently many” can be reduced and optimized (thus ensuring equidistribution
among larger sample spaces of inputs) whenever q is squarefree.

The intuitive explanation for such constraints on our inputs n comes from a certain ‘mixing’
phenomenon in the unit group mod q. To illustrate this, let q be an odd positive integer. From
the set of units u mod q for which u+1 is also a unit, choose uniformly at random u1, u2, u3, . . . ,
and construct the sequence of partial products u1+1, (u1+1)(u2+1), (u1+1)(u2+1)(u3+1), . . . .
Then as we go further into the sequence, each unit mod q is roughly equally likely to appear
as one of the products (u1 + 1) · · · (uJ + 1). This particular example lies at the core of the
weak equidistribution of σ(n) to odd moduli. The phenomenon for σ(n) to even moduli not
divisible by 3 is analogous, except that we work with units u mod q for which u2 + u + 1 is
also a unit mod q.

Interestingly, although this mixing phenomenon can be interpreted as a quantitative ergodicity
phenomenon for random walks on multiplicative groups, no actual Markov chains are harmed in
the production of our arguments. Instead, we detect this mixing quantitatively using methods
from the “anatomy of integers”, supplemented by character sum machinery in conjunction
with linear algebraic arguments over residue rings. But this only takes us partway: To get
the desired main terms, we crucially need arguments from both the classical and “pretentious”
schools of analytic number theory. Note that the anatomical part of our arguments cannot
be substituted by purely analytic arguments either, since the latter do not give us the desired
asymptotic in the full range of uniformity. Furthermore, to bound the contributions of certain
“bad” inputs, we need to understand the rational points of certain affine varieties over finite
fields using tools from arithmetic and algebraic geometry. A more detailed summary of the
arguments is given towards the end of the next section.

2. The setting and the main results

2.1. Narkiewicz’s general criterion and shortcomings of previous work.
We say that an arithmetic function f is polynomially-defined if there exists V ≥ 1 and poly-
nomials {Wv}1≤v≤V with integer coefficients satisfying f(pv) = Wv(p) for all primes p and all
v ∈ [V ]. Narkiewicz’s criterion requires the following set-up:

• Consider K,V ≥ 1 and polynomially-defined multiplicative functions f1, . . . , fK : N →
Z, with defining polynomials {Wi,v}1≤i≤K

1≤v≤V
⊂ Z[T ] satisfying fi(pv) = Wi,v(p) for any

prime p, and any i ∈ [K], v ∈ [V ].

• For any q and v ∈ [V ], define Rv(q) := {u ∈ Uq :
∏K

i=1Wi,v(u) ∈ Uq}; here Uq :=
(Z/qZ)× denotes the multiplicative group mod q. 1

• Fix k ∈ [V ] and assume that {Wi,k}1≤i≤K are all nonconstant. We say that q ∈ N is
k-admissible (with respect to the family (Wi,v)1≤i≤K

1≤v≤V
) if the set Rk(q) is nonempty but

the sets Rv(q) are empty for all v < k.

1Hence, saying “r ∈ Uq” for an integer r is synonymous with saying that “gcd(r, q) = 1”.
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• Define Q(k; f1, · · · , fK) to be the set of all k-admissible integers q such that for every
tuple (χ1, . . . , χK) ̸= (χ0, . . . , χ0) of Dirichlet characters

2 mod q for which the product∏K
i=1 χi ◦Wi,k acts trivially on Rk(q)

3, there exists a prime p satisfying

(2.1)
∑
j≥0

χ1(f1(p
j)) · · ·χK(fK(pj))

pj/k
= 0.

Narkiewicz’s criterion [29, Theorem 1] in this setting is then stated as follows; a precursor to
this result is his older criterion [27, Theorem 1] for a single multiple function.

Theorem N. Fix a k-admissible integer q. The functions f1, . . . , fK are jointly weakly equidis-
tributed modulo q if and only if q ∈ Q(k; f1, · · · , fK).

It is worth pointing out that the above result and the older [27, Theorem 1] are capable of
dealing with really sparse input sets. For instance, for a fixed k ∈ [V ], if q is k-admissible,
then by Lemma 3.3, the sample space of relevant inputs {n ≤ x : gcd(f1(n) . . . fK(n), q) = 1}
consists of those integers which are “almost” k-full, hence this sample space has size only
O(x1/k). In general, sparse sets like this can often present difficulties while studying arithmetic
questions about them.

As mentioned in the introduction, the first steps towards obtaining uniform analogues of
Narkiewicz’s forerunning criterion [27, Theorem 1] to Theorem N were taken in [23], [36]
and [38]. However the arguments in these papers are very much limited to the case of a single
multiplicative function (i.e. K = 1), and even in that special case, they are still far from giving
best possible analogues of [27, Theorem 1] because they crucially need q to be 1-admissible
(i.e. k = 1) and have sufficiently large prime factors, and also crucially need the defining
polynomial W1,1 to be separable. In particular, the results in [23], [36] and [38] are unable to
deal with sparse input sets and hence also unable to give satisfactory uniform analogues of
most of the previously-mentioned results of Narkiewicz, Rayner, Śliwa, Dobrowolski, Fomenko,
and others in [27], [49], [15], [28], [29], [32], [30], [31, Theorem 6.12], [40], [41].

In this paper, we remove all these limitations, and obtain best possible uniform analogues
of Theorem N, which are thus also best possible analogues of the Siegel–Walfisz theorem for
families of polynomially–defined multiplicative functions. Our results will not impose any ad-
ditional restrictions, beyond those that can be proven to be necessary and essentially optimal.
These results are thus also new for a single multiplicative function as they address all the
aforementioned shortcomings of [23], [36] and [38]. Special cases of our main results thus also
give completely uniform analogues of all the works mentioned in the previous paragraph.

2.2. Multiplicative independence and the Invariant Factor Hypothesis.
For concrete and provably unavoidable reasons (see Theorems 2.4 and 2.5 below), we are going
to need two additional hypotheses. We first define the relevant notation and terminology.

2Here χ0 or χ0,q denotes, as usual, the trivial or principal character mod q.
3i.e.

∏K
i=1 χi(Wi,k(u)) = 1 for all u ∈ Rk(q); note that Rk(q) is precisely the support of the product∏K

i=1 χi ◦Wi,k (i.e. the set of u where it is nonzero)
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1. We say that the polynomials {Fi}1≤i≤K ⊂ Z[T ] are multiplicatively independent (over Z)
if there is no tuple of integers (c1, . . . , cK) ̸= (0, . . . , 0) for which the product

∏K
i=1 F

ci
i is

identically constant in Q(T ). This hypothesis is very easy to satisfy, for example if
∏K

i=1 Fi is
separable, then {Fi}1≤i≤K ⊂ Z[T ] are multiplicatively independent.

2. Assume that {Fi}Ki=1 ⊂ Z[T ] are multiplicatively independent. Factor Fi = ri
∏M

j=1G
µij
j

with ri ∈ Z, {Gj}Mj=1 ⊂ Z[T ] being pairwise coprime primitive4 irreducibles and with µij ≥ 0
being integers, such that each Gj appears with a positive exponent µij in some Fi. Let
ω(F1 · · ·FK) :=M and define the exponent matrix of (Fi)

K
i=1 to be the M ×K matrix

E0 := E0(F1, . . . , FK) :=


µ11 · · · µK1

· · · · · · · · ·
· · · · · · · · ·
µ1M · · · µKM

 ∈ MM×K(Z),

so that E0 has a positive entry in each row. Since {Fi}Ki=1 ⊂ Z[T ] are multiplicatively inde-
pendent, the columns of E0 are Q-linearly independent and ω(F1 · · ·FK) =M ≥ K.

3. Continuing from above, E0 has a Smith Normal Form given by the M ×K diagonal matrix
diag(β1, . . . , βK), where β1, . . . , βK ∈ Z are the invariant factors of E0 satisfying β1 | · · · | βK ;
since the columns of E0 are Q-linearly independent, it follows that βi are all nonzero. (Here
we fixed some ordering of the Gj to define E0 but the invariant factors are independent of this
ordering.) We shall use β (F1, . . . , FK) to denote the last invariant factor βK . We define the

Invariant Factor Hypothesis: Given B0 > 0, we shall say that a positive integer q satisfies
IFH(F1, . . . , FK ;B0) if gcd(ℓ− 1, β(F1, . . . , FK)) = 1 for any prime ℓ | q satisfying ℓ > B0.

Example: Often in applications,
∏K

i=1 Fi is separable over Q (or more generally, the exponent
matrix E0(F1, . . . , FK) is equivalent to the diagonal matrix diag(1, . . . , 1)); when this happens,
β(F1, . . . , FK) = 1, so any integer satisfies IFH(F1, . . . , FK ;B0) for any B0 > 0.

2.3. Set-up for the main results. Most of the set-up for the main results has already been
done before Theorem N, however there is some additional notation, so for convenience of the
reader, we state the complete set-up below:

• Consider multiplicative functions f1, . . . , fK : N → Z and polynomials {Wi,v}1≤i≤K
1≤v≤V

⊂

Z[T ] satisfying fi(pv) = Wi,v(p) for any prime p, any i ∈ [K] and v ∈ [V ].

• Let f :=
∏K

i=1 fi and Wv :=
∏K

i=1Wi,v, so f(p
v) = Wv(p) for all primes p and all v.

• For each v ∈ [V ], define Dv := degWv =
∑K

i=1 degWi,v. Also let D := Dk, and
Dmin := min1≤i≤K degWi,k.

• For any q and v ∈ [V ], define Rv(q) = {u ∈ Uq : Wv(u) ∈ Uq} and αv(q) :=
1

φ(q)
#Rv(q).

• Fix k ∈ [V ], and say that q is k-admissible if Rk(q) = ∅ but Rv(q) ̸= ∅ for all v < k.

Note that if q is k-admissible, then αv(q) = 0 for v < k, while αk(q) ≫Wk
(log log(3q))−D

by the Chinese Remainder Theorem and a standard argument using Mertens’ Theorem.

4We say that a polynomial in Z[T ] is primitive when the greatest common divisor of its coefficients is 1.
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• Assume that {Wi,k}1≤i≤K are multiplicatively independent.

• Define Q(k; f1, · · · , fK) exactly as before the statement of Theorem N.

2.4. The Main Results.
In Theorems 2.1 to 2.3 below, we fix K0, B0 > 0. Our implied constants depend only on K0, B0

and the polynomials {Wi,v}1≤i≤K
1≤v≤k

, and are in particular independent of V and of {Wi,v}1≤i≤K
k<v≤V

.

Theorem 2.1. Fix ϵ ∈ (0, 1). The functions f1, . . . , fK are jointly weakly equidistributed, uni-
formly to all moduli q ≤ (log x)K0 lying in Q(k; f1, · · · , fK) and satisfying IFH(W1,k, . . . ,WK,k;
B0), provided any one of the following holds.

(i) Either K = 1 and W1,k = Wk is linear, or K ≥ 2, q ≤ (log x)(1−ϵ)αk(q)/(K−1) and at
least one of {Wi,k}1≤i≤K is linear (i.e., Dmin = 1).

(ii) q is squarefree and qK−1D
ω(q)
min ≤ (log x)(1−ϵ)αk(q).

(iii) Dmin > 1 and q ≤ (log x)(1−ϵ)αk(q)(K−1/Dmin)
−1
.

A concrete application: By [28, Theorem 1], φ(n) and σ(n) are jointly WUD modulo a
fixed integer q precisely when q is coprime to 6; in fact, Q(1;φ, σ) = {q : (q, 6) = 1}. Theorem
2.1 shows that (φ, σ) are jointly WUD uniformly modulo q ≤ (log x)(1−ϵ)α(q) coprime to 6,
where α(q) := α1(q) =

∏
ℓ|q(ℓ− 3)/(ℓ− 1) and ϵ > 0 is fixed but arbitrary.

Optimality of the conditions in Theorem 2.1: In subsection § 8.1, we will show that
except in the very first case when K = 1 and Wk = W1,k is linear, the ranges of q in (i)–(iii)
above are all essentially optimal. We will also show that for K ≥ 2, the range of q in (i) is
essentially optimal, even if q is squarefree and {Wi,k}1≤i≤K are all linear, for any choice of
(pairwise coprime) linear functions! In particular, this means that the aforementioned range
(log x)(1−ϵ)α(q) is basically optimal for the joint weak equidistribution of φ and σ, even if we
restrict to squarefree q. Thus the special case of Theorem 2.1(i) for the family (φ, σ) is the
best possible uniform analogue of Narkiewicz’s result in [28] for a single varying modulus.

Restoring uniformity in the Siegel–Walfisz range:
Our constructions in § 8.1 will reveal that obstructions to uniformity in q come from inputs n
of the form P k for primes P . Modifying those constructions, we can produce more obstructions
of the form mP k with m fixed or growing slowly with x. It turns out that the problematic
inputs in general are those with too few large prime factors. More precisely, uniformity in the
full Siegel-Walfisz range q ≤ (log x)K0 is restored if we restrict attention to those n that are
divisible by sufficiently many primes exceeding q.

To make this precise, let P1(n) := P (n) denote the largest prime divisor of n, with the con-
vention that P (1) := 1. Inductively define Pm(n) := Pm−1(n/P (n)), so that Pm(n) is the m-th
largest prime factor of n (counted with multiplicity), with Pm(n) = 1 if Ω(n) < m. Since
D = 1 forces K = 1 and Wk = W1,k to be linear (a case in which Theorem 2.1(i) already gives
complete uniformity in q ≤ (log x)K0), we assume in Theorems 2.2 and 2.3 below that D ≥ 2.
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Theorem 2.2. As x → ∞ and uniformly in coprime residues a1, . . . , aK to moduli q ≤
(log x)K0 lying in Q(k; f1, · · · , fK) and satisfying IFH(W1,k, . . . ,WK,k;B0), we have

(2.2) #{n ≤ x : PR(n) > q, (∀i) fi(n) ≡ ai (mod q)}

∼ 1

φ(q)K
#{n ≤ x : gcd(f(n), q) = 1} ∼ 1

φ(q)K
#{n ≤ x : PR(n) > q, gcd(f(n), q) = 1},

where {
R = k(KD + 1), if k < D

R is the least integer exceeding k (1 + (k + 1) (K − 1/D)) , if k ≥ D.

Even in the special case k = K = 1, this theorem improves over Theorem 1.4(a) in [38].
The value of R is optimal for K = 1 and f1(n) = σ(n) modulo even q; see the discussion on
applications in subsection § 2.6. For squarefree q, it suffices to have much weaker restrictions
on n (that are also exactly or nearly optimal) to restore uniformity in the Siegel–Walfisz range.

Theorem 2.3. The formulae (2.2) hold as x→ ∞, uniformly in coprime residues a1, . . . , aK
modulo squarefree q ≤ (log x)K0 lying in Q(k; f1, · · · , fK) and satisfying IFH(W1,k, . . . ,WK,k;B0),
with

R :=


2, if K = k = 1 and W1,1 is not squarefull.

k(Kk +K − k) + 1, if k > 1 and at least one of {Wi,k}1≤i≤K is not squarefull.

k(Kk +K − k + 1) + 1, in general.

Here we write a polynomial F ∈ Z[T ] as F = r
∏M

j=1H
νj
j for some νj ∈ N and pairwise coprime

primitive irreducibles Hj ∈ Z[T ], and we say that F is “squarefull” (in Z[T ]) if (
∏M

j=1Hj)
2 | F .

Note that this is equivalent to saying that
∏

θ∈C
F (θ)=0

(T − θ)2 | F (T ) in C[T ], i.e., that every root

of F in C has multiplicity at least 2.

It is worthwhile to strive for the optimality of R above since doing so ensures weak equidistri-
bution among the largest possible set of inputs n. In subsection § 11.1, we show that the first
two values of R in Theorem 2.3 are exactly optimal, in the sense that in order to have unifor-
mity in q ≤ (log x)K0 , it is not possible to reduce the “2” to “1” or the “k(Kk+K−k)+1” to
“k(Kk +K − k)”. In these examples, {Wi,k}Ki=1 will be pairwise coprime irreducibles, making∏K

i=1Wi,k separable over Q.

2.5. Necessity of the multiplicative independence and invariant factor hypotheses.
We now explain the necessity of these two hypotheses that we have been assuming in our
results so far. It turns out that even if one of them is violated, then uniformity would fail in
the above theorems in some of the worst possible ways: Not only would uniformity fail modulo
arbitrarily large q ≤ (log x)K0 , but also would be unrecoverable no matter how much we restrict
our set of inputs n to those having many large prime factors! This substantiates our previous
comment on Theorems 2.1 through 2.3 being essentially best possible qualitative analogues of
the Siegel–Walfisz theorem for families of polynomially-defined multiplicative functions.

For instance, without the multiplicative independence condition, the K congruences fi(n) ≡ ai
(mod q) (for 1 ≤ i ≤ K) may degenerate to fewer congruences for sufficiently many inputs n,
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making weak equidistribution fail uniformly to all sufficiently large q, no matter how much we
restrict the set of inputs n to those having sufficiently many large prime factors.

Theorem 2.4. Fix R ≥ 1, K > 1 and assume that {Wi,k}1≤i≤K−1 ⊂ Z[T ] are multiplicatively

independent, with
∑K−1

i=1 degWi,k > 1. Suppose WK,k =
∏K−1

i=1 W λi
i,k for some nonnegative

integers (λi)
K−1
i=1 ̸= (0, . . . , 0). There exists a constant C := C(W1,k, . . . ,WK−1,k) > 0 such that

#{n ≤ x : PRk(n) > q, (∀i ∈ [K]) fi(n) ≡ ai (mod q)} ≫ 1

φ(q)K−1
· x

1/k(log log x)R−2

log x

as x → ∞, uniformly in k-admissible q ≤ (log x)K0 supported on primes ℓ > C satisfying

gcd(ℓ− 1, β(W1,k, . . . , WK−1,k)) = 1, and in ai ∈ Uq with aK ≡
∏K−1

i=1 aλii (mod q).

The compatibility of the relations in {Wi,k}1≤i≤K and (ai)
K
i=1 suggests why the K congruences

degenerate to K − 1 congruences. Turning to the invariant factor hypothesis, we claim that
the failure of this condition incurs an additional factor over the expected proportion of n ≤ x
satisfying gcd(f(n), q) = 1. For certain choices of q and {Wi,k}1≤i≤K , this factor can be
made too large, once again leading to an overrepresentation of the tuple (ai mod q)Ki=1 by the
multiplicative functions f1, . . . , fK . In what follows, P−(q) denotes the least prime dividing q.

Theorem 2.5. Fix R ≥ 1 and assume that {Wi,k}1≤i≤K ⊂ Z[T ] are nonconstant, monic and
multiplicatively independent, so that β = β(W1,k, . . . ,WK,k) ∈ Z \ {0}. There exists a constant
C := C(W1,k, . . . ,WK,k) > 0 such that
(2.3)

#{n ≤ x : PRk(n) > q, (∀i ∈ [K]) fi(n) ≡ ai (mod q)} ≫ 2#{ℓ|q: gcd(ℓ−1,β)̸=1}

φ(q)K
·x

1/k(log log x)R−2

log x

as x→ ∞, uniformly in k-admissible q ≤ (log x)K0 having P−(q) > C, and in coprime residues
(ai)

K
i=1 mod q which are all congruent to 1 modulo the largest squarefree divisor of q.

We shall formally establish Theorems 2.4 and 2.5 in our sequel note [48].

2.6. Some more concrete applications of our main results.
We give several applications of our main results to arithmetic functions of common interest.
Recall Śliwa’s [49] result that σ(n) is weakly equidistributed precisely to moduli that are not
multiples of 6; in fact, his result shows that Q(1;σ) = {q : gcd(q, 2) = 1} and Q(2;σ) = {q :
gcd(q, 6) = 2}. By Theorem 2.1(i), σ(n) is WUD uniformly to all odd moduli q ≤ (log x)K0 .
Calling the members of the set Q(2;σ) “special”, Theorem 2.1(ii) and (iii) show that σ(n) is
WUD uniformly to all special q ≤ (log x)(2−δ)α̃(q) and also to all squarefree special q ≤ (log x)K0

satisfying 2ω(q) ≤ (log x)(1−ϵ)α̃(q), where α̃(q) := α2(q) =
∏

ℓ|q
ℓ≡1 (mod 3)

(1 − 2/(ℓ − 1)). By the

example constructed in [47, subsection 7.1], the latter restriction is optimal. Furthermore, by
Theorem 2.2 (resp. 2.3), uniformity is restored to all (resp. to squarefree) special q ≤ (log x)K0

by restricting to inputs n with P6(n) > q (resp. P4(n) > q). 5 By the examples constructed in
[47], both of these restrictions are optimal as well.

5Here we have noted that the condition P3(n) > q forces P4(n) > q since for σ(n) to be coprime to the even
number q, it is necessary for n to be of the form m2 or 2m2.
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Another example: we saw using Theorem 2.1 that φ(n) and σ(n) are jointly WUD modulo q ≤
(log x)(1−ϵ)α(q) coprime to 6, and that these two restrictions on q are necessary and essentially
optimal. By Theorem 2.2, complete uniformity is restored to all moduli q ≤ (log x)K0 coprime
to 6 by restricting to inputs n with P5(n) > q. Likewise, we can get interesting consequences
of Theorems 2.1, 2.2 and 2.3 for the families (φ, σ3), (φ, σ, σ2), (φ, σ, σ2, σ3) and so on.

We can give more applications of our main results to study the weak equidistribution of the
Fourier coefficients of Eisenstein series; more generally, the functions σr(n) :=

∑
d|n d

r (for

r > 1). An easy check shows that the polynomial
∑

0≤j≤v T
rj = T r(v+1)−1

T r−1
shares no roots with

its derivative, hence is separable. Calling the q ∈ Q(k;σr) as “k-special”, Theorem 2.1 thus

shows that σr is WUD uniformly modulo all k-special q ≤ (log x)(1−ϵ)αk(q)(1−1/kr)−1
, and modulo

all squarefree k-special q ≤ (log x)K0 having ω(q) ≤ (1− ϵ)αk(q) log log x/ log(kr). Further, by
Theorems 2.2 and 2.3, weak equidistribution is restored modulo all k-special (resp. squarefree
k-special) q ≤ (log x)K0 by restricting to n with Pk(kr+1)(n) > q (resp. Pk+1(n) > q).

An explicit characterization of the moduli q ≤ (log x)K0 to which a given σr is weakly equidis-
tributed thus reduces to an understanding of the possible k and of the set Q(k;σr) for a given
(fixed) r; both of these are problems of fixed moduli that (as mentioned in the introduction)
have been studied in great depth in [49], [15], [32], [30], [31], [40] and [41]. In fact, the sets
Q(k;σr) have been explicitly characterized for all odd r ≤ 200 and all even r ≤ 50, and partial
results are known for general r ≥ 4. For example, the only two possible k’s for σ3 are k = 1, 2,
and Q(1;σ3) = {q : gcd(q, 14) = 1} while Q(2;σ3) = {q : gcd(q, 6) = 2}.

For a general family (f1, . . . , fK) of polynomially–defined multiplicative functions, Narkiewicz
[28, 31] gives algorithms to determine the sets Q(k; f1, · · · , fK) for a fixed k. He shows (among
other results) that in some of the most commonly occurring cases (which includes the cases
of σr for all r > 2), the set of possible k is finite, and that for each such k, we can describe
Q(k; f1, . . . , fK) via (finitely many) coprimality restrictions that can be determined effectively.

We conclude this section with the remark that although for the sake of simplicity of statements,
we have been assuming that our multiplicative functions {fi}Ki=1 and polynomials {Wi,v}1≤i≤K

1≤v≤V
are both fixed, our proofs will reveal that these results are also uniform in the {fi}Ki=1 as long
as they are defined by the fixed polynomials {Wi,v}1≤i≤K

1≤v≤V
.

2.7. Notation and conventions.

• We do not consider the zero function as multiplicative, so if f is multiplicative, then
f(1) = 1.

• Given z > 0, we say that a positive integer n is z-smooth if P (n) ≤ z, and z-rough if
P−(n) > z. By the z-smooth part (resp. z-rough part) of n, we shall mean the largest
z-smooth (resp. z-rough) positive integer dividing n.

• For a ring R, R× denotes the multiplicative group of units of R. Write Uq := (Z/qZ)×.

• We denote the number of primes dividing q counted with and without multiplicity by
Ω(q) and ω(q) respectively.

• For a Dirichlet character χ mod q, we use f(χ) to denote the conductor of χ.
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• When there is no danger of confusion, we shall write (a1, . . . , ak) in place of gcd(a1, . . . , ak).

• Throughout, the letters p and ℓ are reserved for primes.

• For nonzero H ∈ Z[T ], we use ordℓ(H) to denote the highest power of ℓ dividing all
the coefficients of H; for an integer m ̸= 0, we may use vℓ(m) in place of ordℓ(m).

• Let MA×B(Z) denote the ring of A×B matrices with integer entries, while GLA×B(Z)
refer to the group of units of MA×B(Z), i.e. the matrices with determinant ±1.

• Implied constants in ≪ and O-notation, as well as implicit constants in qualifiers
like “sufficiently large”, may always depend on any parameters declared as “fixed”; in
particular, they will always depend on the polynomials {Wi,v}1≤i≤K

1≤v≤k
. Other dependence

will be noted explicitly (for example, with parentheses or subscripts): Notably, we shall
use C(F1, . . . , FK), C

′(F1, . . . , FK) and so on, to denote constants depending on the
fixed polynomials F1, . . . , FK .

• We write logk for the k-th iterate of the natural logarithm.

3. Technical preparation: The number of n ≤ x for which gcd(f(n), q) = 1

In this section, we shall provide a rough estimate on the count of n ≤ x for which f(n) =∏K
i=1 fi(n) is coprime to the modulus q, uniformly in q ≤ (log x)K0 . We will show the following

estimate, which generalizes Proposition 2.1 in [38]. In the rest of the paper, we abbreviate
αv(q) to αv for each v ∈ [V ].

Proposition 3.1. For all sufficiently large x and uniformly in k-admissible q ≤ (log x)K0,

(3.1)
∑
n≤x

(f(n),q)=1

1 =
∑
n≤x

each (fi(n),q)=1

1 =
x1/k

(log x)1−αk
exp(O((log2(3q))

O(1))).

3.1. Proof of the lower bound. Any m ≤ x1/k satisfying gcd(f(mk), q) = 1 is certainly
counted in the left hand side of (3.1). To estimate the number of such m, we apply [38,
Proposition 2.1], with f(nk) and x1/k playing the roles of “f(n)” and “x” in the quoted
proposition. This shows that the sum in (3.1) is bounded below by the right hand side.

3.2. Proof of the upper bound. We start by giving an upper bound on the count of r-full
smooth numbers; here we consider any n ∈ N to be 1-full (and we consider 1 as being r-full
for any r ≥ 1). The case r = 1 of the lemma below is a classical bound on smooth numbers.

Lemma 3.2. Fix r ∈ N. We have as X,Z → ∞,

#{n ≤ X : P (n) ≤ Z, n is r-full} ≪ X1/r(logZ) exp

(
−U
r
logU +O(U log2(3U))

)
,

uniformly for (logX)max{3,2r} ≤ Z ≤ X1/2, where U := logX/logZ.
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Proof of Lemma 3.2. The lemma is a classical application of Rankin’s trick. We start by letting
η ≤ min{1/3, 1/2r} be a positive parameter to be chosen later, and observe that

∑
n≤X: P (n)≤Z
n is r-full

1 ≤
∑

n is r-full
P (n)≤Z

(
X

n

)(1−η)/r

≪ X(1−η)/r exp

(∑
p≤Z

1

p1−η

)
,(3.2)

where we have used the Euler product and noted that
∑

p

∑
v≥r+1 p

−v(1−η)/r ≪
∑

p p
−(1−η)(1+1/r)

≪r 1 since (1− η)(1 + 1/r) ≥ (1 + 1/r)(1−min{1/3, 1/2r}) > 1.

Now set η := logU
logZ

≤ min
{

1
3
, 1
2r

}
. We write

∑
p≤Z 1/p

1−η = log2 Z+
∑

p≤Z(exp(η log p)−1)/p+

O(1). Since η log p ≤ log 2 ≪ 1 for all p ≤ 21/η, we find that the contribution of p ≤ 21/η to the
last sum above is

∑
p≤21/η(exp(η log p)− 1)/p≪ η

∑
p≤21/η log p/p≪ 1, while the contribution

of p ∈ (21/η, Z] is at most (exp(η logZ) − 1)
∑

21/η<p≤Z 1/p ≤ U(log2 U + O(1)). Collecting

estimates, we obtain
∑

p≤Z 1/p
1−η = log2 Z + O(U log2(3U)), which from (3.2) completes the

proof of the lemma. □

The following important observation will be useful throughout the paper.

Lemma 3.3. If q is k-admissible, then the k-free part of any positive integer n satisfying
gcd(f(n), q) = 1 is bounded. More precisely, it is of size O(1), where the implied constant
depends only on the polynomials {Wi,v}1≤i≤K

1≤v≤k
.

Proof. Let Sv := {ℓ prime : αv(ℓ) = 0}. (Recall αv and Wv from § 2.3.) Note the following:

Observation 1. For each 1 ≤ v < k, the set Sv consists only of primes of size O(1),
with the implied constant depending only on the polynomials W1,v, . . . ,WK,v:
This is because for any prime ℓ, we have αv(ℓ) =

1
φ(ℓ)

#{u ∈ Uℓ : Wv(u) ∈ Uℓ} ≥ 1−Dv/(ℓ−1).

Thus, αv(ℓ) > 0 for all ℓ > 1 +Dv = 1 +
∑K

i=1 degWi,v.

Observation 2. For any positive integer n satisfying gcd(f(n), q) = 1, the k-free part
of n must only be divisible by primes from

⋃
1≤v<k Sv:

Assume by way of contradiction, that there exists some n satisfying gcd(f(n), q) = 1 and some
prime p ̸∈

⋃
1≤v<k Sv satisfying pr ∥ n for some r < k. Then Wr(p) = f(pr) divides f(n).

Since q is k-admissible and r < k, we must have αr(q) = 0. But since αr(q) =
∏

ℓ|q αr(ℓ) by

the Chinese Remainder Theorem, it follows that there must be some prime ℓ0 | q for which
αr(ℓ0) = 0. By definition of αr, this means that for any unit u ∈ Uℓ0 , we must have ℓ0 | Wr(u).
In particular, since the prime p above does not lie in Sr while ℓ0 does, it follows that p ̸= ℓ0,
so that ℓ0 | Wr(p) | f(n), contradicting the requirement that gcd(f(n), q) = 1.

Lemma 3.3 follows immediately Observations 1 and 2. □

We will also need the following estimate, which is a restatement of [38, Lemma 2.4].
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Lemma 3.4. Let G ∈ Z[T ] be a fixed nonconstant polynomial. For each positive integer q, let
αG(q) :=

1
φ(q)

#{u ∈ Uq : G(u) ∈ Uq}. We have, uniformly in q and x ≥ 3q,∑
p≤x

1(G(p),q)=1

p
= αG(q) log2 x+O((log2 (3q))

O(1)).

Coming to the proof of the upper bound implied in (3.1), we define y := exp(
√
log x) and

start by removing those n which are divisible by the (k + 1)-th power of a prime exceeding y.
Writing any such n as AB for some k-free B and k-full A, Lemma 3.3 shows that B ≪ 1 so
that the contribution of such n to (3.1) is

∑
n≤x: (f(n),q)=1

∃ p>y: pk+1|n

1 ≪
∑
A≤x

A is k-full
∃ p>y: pk+1|n

1 ≤
∑
p>y

∑
v≥k+1
pv≤x

∑
m≤x/pv
m is k-full

1 ≪
∑
p>y

∑
v≥k+1

(
x

pv

)1/k

≪
(
x

y

)1/k

,

(3.3)

where we have used the fact that the number of k-full integers up to X is O(X1/k) (see [14]).
The last expression above is negligible in comparison to the right hand side of (3.1). Hence,
it remains to bound the number of n satisfying (f(n), q) = 1 that are not divisible by the
(k + 1)-th power of any prime exceeding y.

We write any such n in the form BMN , where N is y-rough, BM is y-smooth, B is k-free, M
is k-full, and B,M,N are pairwise coprime. By Lemma 3.3, we see that B = O(1) and that
N is k-full. But also since n is not divisible by the (k+1)-th power of any prime exceeding y,
we must have N = Ak for some squarefree y-rough integer A. Consequently,

(3.4)
∑

n≤x: (f(n),q)=1

p>y =⇒ pk+1 ∤ n

1 ≤
∑
B≤x

(f(B),q)=1
B is k-free

∑
M≤x/B: M is k-full
P (M)≤y, (f(M),q)=1

∑
A≤(x/BM)1/k

P−(A)>y: (f(Ak),q)=1
A squarefree

1.

We now write the right hand side of the above inequality as Σ1 + Σ2, where Σ1 and Σ2 count
the contribution of (B,M,A) with M ≤ x1/2 and M > x1/2, respectively.

Bounding Σ2: Any A counted in Σ2 satisfies A ≤ (x/BM)1/k ≤ x1/2k/B1/k, so that

Σ2 ≤
∑
B≤x

(f(B),q)=1
B is k-free

∑
A≤x1/2k/B1/k

P−(A)>y: (f(Ak),q)=1
A squarefree

∑
M≤x/BAk: P (M)≤y
M is k-full, (f(M),q)=1

1.

To bound the innermost sum, we invoke Lemma 3.2; here U = log(x/BAk)
log y

≥ 1
2

√
log x. This

yields

Σ2 ≪
∑
B≤x

(f(B),q)=1
B is k-free

∑
A≤x1/2k/B1/k

P−(A)>y: (f(Ak),q)=1
A squarefree

x1/k

B1/kA
exp

(
− 1

6k

√
log x · log2 x

)
.

Recalling that B = O(1) and bounding the sum on A trivially by 2 log x, we deduce that
Σ2 ≪ x1/k exp

(
−
√
log x

)
, which is negligible compared to the right hand side of (3.1).
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Bounding Σ1: To bound the (innermost) sum on A in Σ1, we invoke [18, Theorem 01, p. 2]
on the multiplicative function g(A) := µ(A)21P−(A)>y1(f(Ak),q)=1, with µ denoting the Möbius

function. Since M ≤ x1/2 and B ≪ 1, this gives

Σ1 ≪
x1/k

log x
exp

( ∑
y<p≤x

1(Wk(p),q)=1

p

) ∑
M≤x1/2: M is k-full
P (M)≤y, (f(M),q)=1

1

M1/k
.

But since the sum on M above is no more than
(3.5) ∑

M is k-full
P (M)≤y, (f(M),q)=1

1

M1/k
≤
∏
p≤y

(
1 +

1(f(pk),q)=1

p
+O

(
1

p1+1/k

))
≪ exp

(∑
p≤y

1(Wk(p),q)=1

p

)
,

it follows by an estimation of
∑

p≤y 1(Wk(p),q)=1/p via Lemma 3.4, that Σ1 is absorbed in the

right hand side of (3.1). This establishes Proposition 3.1.

4. The main term in Theorems 2.1 to 2.3: Contribution of “convenient” n

In what follows, we define

J := ⌊log3 x⌋ and y := exp((log x)ϵ/2),

where ϵ is as in the statement of Theorem 2.1 and ϵ := 1 for Theorems 2.2 and 2.3. We call
n ≤ x convenient if the largest J distinct prime divisors of n exceed y and each appear to
exactly the k-th power in n. In other words, n is convenient iff it can be uniquely written in
the form n = m(PJ · · ·P1)

k for m ≤ x and primes P1, . . . , PJ satisfying

(4.1) Lm := max{y, P (m)} < PJ < · · · < P1.

Note that any n having PJk(n) ≤ y must be inconvenient; on the other hand, if n is inconvenient
and satisfies gcd(f(n), q) = 1 then either PJk(n) ≤ y or n is divisible by the (k + 1)-th power
of a prime exceeding y. These observations will be helpful in the rest of the paper.

We start by showing that there are a negligible number of inconvenient n ≤ x satisfying
gcd(f(n), q) = 1.

Proposition 4.1. We have as x→ ∞,

(4.2)
∑

n≤x: (f(n),q)=1
n inconvenient

1 = o

( ∑
n≤x

(f(n),q)=1

1

)
,

uniformly in k-admissible q ≤ (log x)K0.

Proof. By (3.3) and (3.1), the contribution of the n’s that are divisible by the (k+1)-th power
of a prime exceeding y is negligible. Letting z := x1/ log2 x, we show that the contribution of
z-smooth n to the left side of (4.2) is also negligible compared to the right. Indeed, writing
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any such n in the form AB for some k-free B and k-full A, we have P (A) ≤ z whereas (by
Lemma 3.3) B = O(1). Hence the contribution of z-smooth n is, by Lemma 3.2,

(4.3)
∑

n≤x: P (n)≤z
(f(n),q)=1

1 ≪
∑

A≤x: P (A)≤z
A is k-full

1 ≪ x1/k exp

(
−
(
1

k
+ o(1)

)
log2 x log3 x

)
,

which is indeed negligible compared to the right hand side of (4.2).

It remains to consider the contribution of those n which are neither z-smooth nor divisible by
the (k+1)-th power of a prime exceeding y. Since n is inconvenient, we must have PJk(n) ≤ y
(see the discussion just preceding the statement of this proposition). Hence, n can be written
in the form mP k where P := P (n) > z and m = n/P k, so that PJk(m) ≤ y, gcd(m,P ) = 1
and f(n) = f(m)f(P k). Given m, there are at most

∑
z<P≤(x/m)1/k 1 ≪ x1/k/m1/k log z many

possibilities for P . Consequently,

(4.4)
∑

n≤x inconvenient
P (n)>z, (f(n),q)=1

p>y =⇒ pk+1 ∤ n

1 ≤
∑

n≤x: PJk(n)≤y
P (n)>z, (f(n),q)=1

p>y =⇒ pk+1 ∤ n

1 ≪ x1/k log2 x

log x

∑
m≤x

PJk(m)≤y, (f(m),q)=1

p>y =⇒ pk+1 ∤ m

1

m1/k
.

As in the argument preceding (3.4), we write any m occurring in the above sum (uniquely) in
the form BMAk, where B is k-free, M is k-full, A is squarefree, P (BM) ≤ y < P−(A), and
Ω(A) ≤ J (since PJk(n) ≤ y). Since B = O(1), we deduce that∑

m≤x
PJk(m)≤y, (f(m),q)=1

p>y =⇒ pk+1 ∤ m

1

m1/k
≪

∑
M k-full

P (M)≤y, (f(M),q)=1

1

M1/k

∑
A≤x

Ω(A)≤J

1

A
.

The sum on A is no more than (1 +
∑

p≤x 1/p)
J ≤ (2 log2 x)

J ≤ exp(O((log3 x)
2)), while the

sum on M is ≪ exp(αk log2 y +O((log2(3q))
O(1))) by (3.5) and Lemma 3.4. Altogether,

(4.5)
∑
m≤x

PJk(m)≤y, (f(m),q)=1

p>y =⇒ pk+1 ∤ m

1

m1/k
≪ (log x)αkϵ/2 exp

(
O((log3 x)

2 + (log2(3q))
O(1))

)
.

Inserting this into (4.4) and comparing with (3.1) completes the proof. □

It turns out that the convenient n give the dominant contributions in our asymptotics, in the
sense that it is these n that give the desired main term.

Theorem 4.2. Fix K0, B0 > 0 and assume that {Wi,k}1≤i≤K ⊂ Z[T ] are nonconstant and
multiplicatively independent. As x→ ∞, we have∑

n≤x convenient
(∀i) fi(n)≡ai (mod q)

1 ∼ 1

φ(q)K

∑
n≤x

(f(n),q)=1

1,

uniformly in coprime residues a1, . . . , aK to moduli q ≤ (log x)K0 lying in Q(k; f1, · · · , fK) and
satisfying IFH(W1,k, . . . ,WK,k;B0).
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We shall prove this theorem in the next few sections. In this section and the next, we take
the first step by showing a weaker version of this result, where we reduce the congruences
fi(n) ≡ ai from modulus q to a bounded divisor of q.

Proposition 4.3. Fix K0, B0 > 0 and assume that {Wi,k}1≤i≤K ⊂ Z[T ] are nonconstant and
multiplicatively independent. There exists a constant λ := λ(W1,k, . . . ,WK,k;B0) > 0 depending
only on {Wi,k}1≤i≤K ⊂ Z[T ] and B0, such that as x→ ∞, we have

(4.6)
∑

n≤x convenient
(∀i) fi(n)≡ai (mod q)

1 =

(
φ(Q0)

φ(q)

)K ∑
n≤x: (f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1 + o

(
1

φ(q)K

∑
n≤x

(f(n),q)=1

1

)
,

uniformly in coprime residues a1, . . . , aK to k-admissible moduli q ≤ (log x)K0 satisfying
IFH(W1,k, . . . ,WK,k;B0). Here Q0 is some divisor of q satisfying Q0 ≤ λ.

Proof. For any N ≥ 1 and (wi)
K
i=1 ∈ UK

q , we define

V(k)
N,K

(
q; (wi)

K
i=1

)
:=

{
(v1, . . . , vN) ∈ (Uq)

N : (∀i ∈ [K])
N∏
j=1

Wi,k(vj) ≡ wi (mod q)

}
.

We write each convenient n uniquely in the form m(PJ · · ·P1)
k, where m,PJ , . . . , P1 satisfy

(4.1). Then fi(n) = fi(m)
∏J

j=1Wi,k(Pj), so that the conditions fi(n) ≡ ai (mod q) amount

to gcd(f(m), q) = 1 and (P1, . . . , PJ) mod q ∈ V ′
q,m := V(k)

J,K

(
q; (aifi(m)−1)Ki=1

)
. Noting that

the conditions P1 · · ·PJ ≤ (x/m)1/k and (P1, . . . , PJ) mod q ∈ V ′
q,m are both independent of

the ordering of P1, . . . , PJ , we obtain∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1 =
∑
m≤x

(f(m),q)=1

∑
(v1,...,vJ )∈V ′

q,m

1

J !

∑
P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct
(∀j) Pj≡vj (mod q)

1.

Proceeding exactly as in [38] to remove the congruence conditions on P1, . . . , PJ by successive
applications of the Siegel–Walfisz Theorem, we deduce that

(4.7)
∑

P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct
(∀j) Pj≡vj (mod q)

1 =
1

φ(q)J

∑
P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct

1 + O

(
x1/k

m1/k
exp

(
−K1(log x)

ϵ/4
))

for some constant K1 := K1(K0) > 0. Collecting estimates and noting that #V ′
q,m ≤ φ(q)J ≤

(log x)K0J , we obtain
(4.8) ∑

n≤x convenient
(∀i) fi(n)≡ai (mod q)

1 =
∑
m≤x

(f(m),q)=1

#V ′
q,m

φ(q)J

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct

1

)
+ O

(
x1/k exp

(
−K1

2
(log x)ϵ/4

))
.



EQUIDISTRIBUTION OF FAMILIES OF MULTIPLICATIVE FUNCTIONS I 17

Here in the last step we have crudely bounded the sum
∑

m≤x
(f(m),q)=1

m−1/k by writing each m

as AB for some k-full A and k-free B satisfying gcd(A,B) = 1, and recalling that B = O(1)
while

∑
1/A ≤

∏
p≤x
(
1 + 1/p+O

(
1/p1+1/k

))
. The following proposition estimates #V ′

q,m.

Note that it actually involves only B0 and the polynomials {Wi,k}1≤i≤K , nothing else.

Proposition 4.4. Assume that {Wi,k}1≤i≤K are multiplicatively independent. Define the quan-

tities D =
∑K

i=1 degWi,k and αk(q) =
1

φ(q)
#{u ∈ Uq :

∏K
i=1Wi,k(u) ∈ Uq} as before.

There exists a constant C0 := C0(W1,k, . . . ,WK,k;B0) > (8D)2D+2 depending only on {Wi,k}1≤i≤K
and B0, such that for any constant C > C0, the following two estimates hold uniformly in co-

prime residues (wi)
K
i=1 to moduli q satisfying αk(q) ̸= 0 and IFH(W1,k, . . . ,WK,k;B0):

(4.9)
#V(k)

N,K

(
q; (wi)

K
i=1

)
φ(q)N

=
αk(q)

N

αk(Q0)N

(
φ(Q0)

φ(q)

)K {#V(k)
N,K

(
Q0; (wi)

K
i=1

)
φ(Q0)N

+O

(
1

CN

)}∏
ℓ|q
ℓ>C0

(
1 +O

(
(4D)N

ℓN/D−K

))
,

uniformly for N ≥ KD + 1, where Q0 is a C0-smooth divisor of q of size OC(1). Moreover

(4.10)
#V(k)

N,K

(
q; (wi)

K
i=1

)
φ(q)N

≤
(∏

ℓe∥q e
)
1N=KD

qN/D
exp (O(ω(q))), for each 1 ≤ N ≤ KD.

Applying (4.9) with N := J = ⌊log3 x⌋ ≥ KD+1, and with C fixed to be a constant exceeding
2CC0

0 , we see that

#V ′
q,m

φ(q)J
= (1 + o(1))

αk(q)
J

αk(Q0)J

(
φ(Q0)

φ(q)

)K {#V ′
Q0,m

φ(Q0)J
+O

(
1

CJ

)}
,

where V ′
Q0,m

:= V(k)
J,K

(
Q0; (aifi(m)−1)Ki=1

)
and we have noted that

∑
ℓ|q
ℓ>C0

(4D)J/ℓJ/D−K ≤(
4D/C

1/(2D+2)
0

)J
= o(1). We insert this into (4.8), and observe that since αk(q) ̸= 0, since

Q0 | q and since Q0 is C0-smooth, we have αk(Q0)C ≥ C
∏

ℓ≤C0

(
1− ℓ−2

ℓ−1

)
≥ C

C
C0
0

≥ 2. Thus

(4.11)
∑

n≤x convenient
(∀i) fi(n)≡ai (mod q)

1

= (1+o(1))

(
φ(Q0)

φ(q)

)K
αk(q)

J

αk(Q0)J

∑
m≤x

(f(m),q)=1

#V ′
Q0,m

φ(Q0)J

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct

1

)
+o

(
1

φ(q)K

∑
n≤x

(f(n),q)=1

1

)
,
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where we have noted that
(4.12)∑
n≤x convenient
gcd(f(n),q)=1

1 = αk(q)
J

∑
m≤x

(f(m),q)=1

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct

1

)
+ O

(
x1/k exp

(
−K1

2
(log x)ϵ/4

))
;

the above estimate can be proven by replicating the arguments leading to (4.8) and observing

that #{(v1, . . . , vJ) ∈ UJ
q :

∏J
j=1Wk(vj) ∈ Uq} = (αk(q)φ(q))

J .

Now for each (wi)
K
i=1 ∈ UK

q , we define UJ,K
(
q,Q0; (wi)

K
i=1

)
to be the set of tuples (v1, . . . , vJ) ∈

UJ
q satisfying

∏J
j=1Wi,k(vj) ∈ Uq and

∏J
j=1Wi,k(vj) ≡ wi (mod Q0) for each i ∈ [K]. Observe

that any convenient n satisfying gcd(f(n), q) = 1 and fi(n) ≡ ai (mod Q0) for all i ∈ [K],
can be uniquely written in the form n = m(PJ · · ·P1)

k, where PJ , . . . , P1 are primes satisfying
(4.1), and where gcd(f(m), q) = 1 and (P1, . . . , PJ) mod q ∈ Um := UJ,K

(
q,Q0; (aifi(m)−1)Ki=1

)
.

As such, by the arguments leading to (4.8), we obtain

(4.13)
∑

n≤x convenient
gcd(f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1 =
∑
m≤x

(f(m),q)=1

#Um
φ(q)J

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct

1

)
+ o

(
1

φ(q)K

∑
n≤x

(f(n),q)=1

1

)
.

A simple counting argument shows the following general observation: Let F ∈ Z[T ] be noncon-
stant, and let d, d′ be positive integers such that d′ | d and αF (d) := 1

φ(d)
#{u ∈ Ud : F (u) ∈ Ud}

is nonzero (hence so is αF (d
′)). Then for any u ∈ Ud′ for which F (u) ∈ Ud′ , we have

(4.14) #{U ∈ Ud : U ≡ u (mod d′), F (U) ∈ Ud} =
αF (d)φ(d)

αF (d′)φ(d′)
.

Using this general observation for F := Wk =
∏K

i=1Wi,k (so that αF = αk), we obtain

#UJ,K
(
q,Q0; (wi)

K
i=1

)
=

(
αk(q)φ(q)

αk(Q0)φ(Q0)

)J
#V(k)

J,K

(
Q0, (wi)

K
i=1

)
for all (wi)

K
i=1 ∈ UK

q . Applying this with wi := aifi(m)−1 and recalling that V ′
Q0,m

=

V(k)
J,K

(
Q0; (aifi(m)−1)Ki=1

)
, we get from (4.13),

∑
n≤x convenient
gcd(f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1 =
αk(q)

J

αk(Q0)J

∑
m≤x

(f(m),q)=1

V ′
Q0,m

φ(Q0)J

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤(x/m)1/k

P1,...,PJ distinct

1

)
+ o

(
1

φ(q)K

∑
n≤x

(f(n),q)=1

1

)
.

Comparing this with (4.11), we obtain∑
n≤x convenient

(∀i) fi(n)≡ai (mod q)

1 = (1 + o(1))

(
φ(Q0)

φ(q)

)K ∑
n≤x convenient
gcd(f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1 + o

(
1

φ(q)K

∑
n≤x

(f(n),q)=1

1

)
.
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Finally, an application of Proposition 4.1 allows us to remove the condition of n being conve-
nient from the main term on the right hand side above. This completes the proof of Proposition
4.3, up to the proof of Proposition 4.4, which we take up in the next section. □

5. Counting solutions to congruences: Proof of Proposition 4.4

5.1. Preparation for the proof of Proposition 4.4.
We temporarily abandon all the previous set-up just for this subsection. We shall make use of
two character sum bounds, which we state in the next two propositions.

Proposition 5.1. Let ℓ be a prime, χ a Dirichlet character mod ℓ. Let F ∈ Z[T ] be a
nonconstant polynomial which is not congruent mod ℓ to a polynomial of the form c ·G(T )ord(χ)
for some c ∈ Fℓ and G ∈ Fℓ[T ], where ord(χ) denotes the order of the character χ. Then∣∣∣∣∣ ∑

u mod ℓ

χ(F (u))

∣∣∣∣∣ ≤ (d− 1)
√
ℓ,

where d is the degree of the largest squarefree divisor of F .

This is a version of the Weil bounds and is a special case of [51, Corollary 2.3] (see also [9],
[52] and [42] for older results). We will also need an analogue of the above result for character
sums to higher prime power moduli, and this input is provided by the following consequences
of Theorems 1.2 and 7.1 and eqn. (1.15) in work of Cochrane [6] (see [7] for related results).

In what follows, for a polynomial H ∈ Z[T ], we denote by H ′ or H ′(T ) the formal derivative of
H. Let ℓ be a prime such that ordℓ(H) = 0, so that H is not identically zero in Fℓ[T ] (see § 2.7
for definition of ordℓ). By the ℓ-critical polynomial associated to H we shall mean the polynomial
CH := ℓ−ordℓ(H

′)H ′, which has integer coefficients and can be considered as a nonzero element
of the ring Fℓ[T ]. By the ℓ-critical points of H, we shall mean the set A(H; ℓ) ⊂ Fℓ of zeros
of the polynomial CH which are not zeros of H (both polynomials considered mod ℓ). Finally,
for any θ ∈ Fℓ, we use µθ(H) to denote the multiplicity of θ as a zero of H.

Proposition 5.2. Let ℓ be a prime, g ∈ Z[T ] a nonconstant polynomial, and t := ordℓ(g
′).

Consider an integer e ≥ t+2 and a primitive character χ mod ℓe. Let M := maxθ∈A(g;ℓ) µθ(Cg)
be the maximum multiplicity of an ℓ-critical point of g.

(i) For odd ℓ, we have |
∑

u mod ℓe χ(g(u))| ≤
(∑

θ∈A(g;ℓ) µθ(Cg)
)
ℓt/(M+1) ℓe(1−1/(M+1)).

(ii) For ℓ = 2 and e ≥ t+ 3, we have |
∑

u mod 2e χ(g(u))| ≤ (12.5)2t/(M+1) 2e(1−1/(M+1)). In
fact, the sum is zero if g has no 2-critical points.

In order to make use of the aforementioned bounds, we will need to understand the quantities
that appear when we apply them. The following observations enable us to do this.

Proposition 5.3. Let {Fi}Ki=1 ⊂ Z[T ] be nonconstant and multiplicatively independent. There
exists a constant C1 := C1(F1, . . . , FK) ∈ N such that all of the following hold:
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(a) For any prime ℓ, there are O(1) many tuples (A1, . . . , AK) ∈ [ℓ − 1]K for which
FA1
1 · · ·FAK

K is of the form c · Gℓ−1 in Fℓ[T ] for some c ∈ Fℓ and G ∈ Fℓ[T ]; here,
the implied constant depends at most on {Fi}Ki=1. In fact, if ℓ > C1 and gcd(ℓ −
1, β(F1, . . . , FK)) = 1, then the only such tuple is (A1, . . . , AK) = (ℓ− 1, . . . , ℓ− 1).

(b) For any prime ℓ and any (A1, . . . , AK) ∈ NK satisfying ℓ ∤ gcd(A1, . . . , AK), we have
in the two cases below,

(5.1) τ(ℓ) := ordℓ
(
(Tφ(ℓ

r)F1(T )
A1 · · ·FK(T )AK )′

)
= ordℓ(F̃ (T )){

= 0, if ℓ > C1, r ≥ 2

≤ C1, if ℓ ≤ C1, ordℓ

(∏K
i=1 Fi

)
= 0, r ≥ C1 + 2,

where F̃ (T ) :=
∑K

i=1AiF
′
i (T )

∏
1≤j≤K
j ̸=i

Fj(T ). In either of the two cases above, any root

θ ∈ Fℓ of the polynomial Cℓ(T ) := ℓ−τ(ℓ)(Tφ(ℓ
r)F1(T )

A1 · · ·FK(T )AK )′ which is not a root

of T
∏K

i=1 Fi(T ), must be a root of the polynomial ℓ−τ(ℓ)F̃ (T ) of the same multiplicity.6

Proof. We start by writing Fi =: ri
∏M

j=1G
µij
j as in subsection § 2.2, so that ri ∈ Z and

G1, . . . , GM ∈ Z[T ] are irreducible, primitive and pairwise coprime, and M = ω(F1 · · ·FK).
Recall that M ≥ K and that the exponent matrix E0(F1, . . . , FK) has Q-linearly independent
columns, making β(F1, . . . , FK) a nonzero integer. Further, since Gj are pairwise coprime
irreducibles, the resultants Res(Gj, Gj′) and discriminants disc(Gj) are nonzero integers for all
j ̸= j′ ∈ [M ]. Note that for any prime ℓ not dividing the leading coefficient of any Gj and not

dividing
∏

1≤j≤M disc(Gj) ·
∏

1≤j ̸=j′≤M Res(Gj, Gj′), the product
∏M

j=1Gj is separable in Fℓ[T ].

Also since (F c1
1 · · ·F cK

K )′ =
(∏K

i=1 F
ci−1
i

)∑K
i=1 ciF

′
i

∏
1≤j≤K
j ̸=i

Fj, the multiplicative indepen-

dence of the polynomials {Fi}Ki=1 forces the polynomials

{
F ′
i

∏
1≤j≤K
j ̸=i

Fj

}K
i=1

⊂ Z[T ] to be

Q-linearly independent. Writing D := deg(F1 · · ·FK) and writing each F ′
i (T )

∏
1≤j≤K
j ̸=i

Fj(T ) =∑D−1
j=0 ci,jT

j for some {ci,j}0≤j≤D−1 ⊂ Z, we thus deduce that the columns of the matrix

(5.2) M1 :=M1(F1, . . . , FK) :=


c1,0 · · · cK,0
· · · · · · · · ·
· · · · · · · · ·
c1,D−1 · · · cK,D−1

 ∈ MD×K(Z)

must be Q-linearly independent. Consequently, D ≥ K and the last diagonal entry β̃ ∈ Z\{0}
of the Smith Normal form of M1 is also the largest invariant factor of M1 (in size).

Fix C1 := C1(F1, . . . , FK) to be any positive integer exceeding all of the following:

• max
{
2, |β̃|,

∏M
j=1 |disc(Gj)| ·

∏
1≤j ̸=j′≤M |Res(Gj, Gj′)|

}
(recall that these are all nonzero),

• the sizes of the leading coefficients of F1, . . . , FK , G1, . . . , GM .

6Once again, the last three polynomials are being considered as nonzero elements of Fℓ[T ].
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We claim that any such C1 satisfies the properties in the statement of the proposition.

Proof of (a). We may assume that ℓ > C1. Let β := β(F1, . . . , FK), as defined in § 2.2. By
the discussion at the start of the proof, the conditions defining C1 force G1, . . . , GM to be
pairwise coprime in Fℓ[T ]. Let (A1, . . . , AK) ̸= (0, . . . , 0) be any tuple of nonnegative integers
for which FA1

1 · · ·FAK
K is of the form c ·Gℓ−1 in Fℓ[T ] for some c ∈ Fℓ and G ∈ Fℓ[T ]. We claim

that A1, . . . , AK must all be divisible by (ℓ − 1)/d1 where d1 := gcd(ℓ − 1, β). This will be
enough to complete the proof of (a), since there are no more than dK1 ≤ |β|K ≪ 1 many tuples
(A1, . . . , AK) ∈ [ℓ− 1]K with each Ai divisible by (ℓ− 1)/d1.

To establish the above claim, we may assume without loss of generality that G is monic, and
note that c ∈ F×

ℓ since ordℓ(F1 · · ·FK) = 0 by definition of C1. Write eachGj as λjHj in the ring
Fℓ[T ], for some λj ∈ F×

ℓ and nonconstant monic Hj ∈ Fℓ[T ] (which can be done since ℓ doesn’t

divide the leading coefficient of any Gj). Then Fi = ri
∏M

j=1G
µij
j = ρi

∏M
j=1H

µij
j for some ρi ∈

F×
ℓ . Since c ·Gℓ−1 =

∏K
i=1 F

Ai
i =

(∏K
i=1 ρ

Ai
i

)
·
∏

1≤j≤M H
∑K

i=1 µijAi

j in Fℓ[T ], and G,H1, . . . , HM

are all monic, we find that Gℓ−1 =
∏

1≤j≤M H
∑K

i=1 µijAi

j . But now since
∏

1≤j≤M Gj is separable

in Fℓ[T ], so is
∏

1≤j≤M Hj, and we deduce that
∑K

i=1 µijAi ≡ 0 (mod ℓ− 1) for each j ∈ [M ].

This can be rewritten as the matrix congruence (0 · · · · · · 0)⊤ ≡ E0(A1 · · ·AK)⊤ (mod ℓ − 1);
each side of this congruence is an M × 1 matrix, Y ⊤ denotes the transpose of a matrix Y and
E0 is the exponent matrix defined in § 2.2.

Now since M ≥ K and E0 has full rank, there exist P0 ∈ GLM×M(Z) and R0 ∈ GLK×K(Z)
for which P0E0R0 is the Smith Normal Form diag(β1, . . . , βK) of E0, with β1, . . . , βK ∈ Z\{0}
being the invariant factors of E0. Thus βi | βi+1 for all 1 ≤ i < K and β = β(F1, . . . , FK) = βK .
This means that P0E0 = diag(β1, . . . , βK)R

−1
0 and writing (qij)1≤i,j≤K := R−1

0 , we find that


0
· · ·
· · ·
0


M×1

≡ P0E0

A1

· · ·
AK


K×1

≡


β1(q11A1 + · · ·+ q1KAK)

· · ·
βK(qK1A1 + · · ·+ qKKAK)

0
· · ·
0


M×1

(mod ℓ− 1).

Hence for each i ∈ [K], βi(qi1A1+ · · ·+ qiKAK) ≡ 0 (mod ℓ− 1), so that (ℓ− 1)/ gcd(ℓ− 1, βi)
divides qi1A1+· · ·+qiKAK . But since βi | βK , it follows that (ℓ−1)/ gcd(ℓ−1, βK) = (ℓ−1)/d1
also divides qi1A1 + · · ·+ qiKAK for each i ∈ [K]. We obtain

(5.3)

 0
· · ·
0


K×1

≡

 q11A1 + · · ·+ q1KAK
· · ·

qK1A1 + · · ·+ qKKAK


K×1

≡ R−1
0

A1

· · ·
AK


K×1

(
mod

ℓ− 1

d1

)
,

establishing the desired claim that (A1, . . . , AK) ≡ (0, . . . , 0)
(
mod ℓ−1

d1

)
.

Proof of (b). We start by noting that
(5.4)

(Tφ(ℓ
r)F1(T )

A1 · · ·FK(T )AK )′ = φ(ℓr)Tφ(ℓ
r)−1

K∏
i=1

Fi(T )
Ai + Tφ(ℓ

r)

(
K∏
i=1

Fi(T )
Ai−1

)
F̃ (T ),
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where F̃ (T ) is as in the statement of the proposition. We claim that ordℓ(F̃ ) ≤ 1ℓ≤C1C1

for all primes ℓ satisfying ordℓ(F1 · · ·FK) = 0 and for all nonnegative integers A1, . . . , AK
satisfying (A1, . . . , AK) ̸≡ (0, . . . , 0) mod ℓ. To show this, we proceed as in the proof of (a),
but working with the matrix M1 defined in (5.2) in place of the exponent matrix E0. Observe

that F̃ (T ) =
∑D−1

j=0

(∑K
i=1 ci,jAi

)
T j, hence if κ(ℓ) := ordℓ(F̃ ), then ℓ

κ(ℓ) divides all the entries

of the matrix M1(A1 · · ·AK)⊤. Since M1 has full rank and D =
∑K

i=1 degFi ≥ K many rows,
and since (A1, . . . , AK) ̸≡ (0, . . . , 0) mod ℓ, an argument entirely analogous to the one leading

to (5.3) shows that ℓκ(ℓ) divides the last invariant factor β̃ ofM1. Hence ordℓ(F̃ ) = κ(ℓ) ≤ vℓ(β̃)

and our claim follows as |β̃| < C1.

As a consequence, we find that ordℓ

(
Tφ(ℓ

r)
(∏K

i=1 Fi(T )
Ai−1

)
F̃ (T )

)
= ordℓ(F̃ ) ≤ 1ℓ≤C1C1

for all primes ℓ ≤ C1 satisfying ordℓ(F1 · · ·FK) = 0, and also for all primes ℓ > C1 (for
which the condition ordℓ(F1 · · ·FK) = 0 is automatic by definition of C1). But now since
ordℓ(φ(ℓ

r)) ≥ 1 for r ≥ 2 and ordℓ(φ(ℓ
r)) ≥ C1 + 1 for r ≥ C1 + 2, (5.4) shows that τ(ℓ) =

ordℓ

(
Tφ(ℓ

r)
(∏K

i=1 Fi(T )
Ai−1

)
F̃ (T )

)
, establishing subpart (b) of the proposition.

Finally, since in both the cases of (5.1), we have τ(ℓ) < r − 1, the identity (5.4) reveals that

Cℓ(T ) ≡ ℓ−τ(ℓ)

(
Tφ(ℓ

r)

K∏
i=1

Fi(T )
Ai

)′

≡ Tφ(ℓ
r)

(
K∏
i=1

Fi(T )
Ai−1

)(
ℓ−τ(ℓ)F̃ (T )

)
in the ring Fℓ[T ].

As such, any root of the polynomial θ ∈ Fℓ of Cℓ(T ) (considered as a nonzero element of Fℓ[T ])
which is not a root of T

∏K
i=1 Fi(T ), must be a root of ℓ−τ(ℓ)F̃ (T ), and θ must have the same

multiplicity in Cℓ(T ) and ℓ−τ(ℓ)F̃ (T ). This completes the proof of Proposition 5.3. □

5.2. Proof of Proposition 4.4.
We return to the set-up in Proposition 4.4. Since αk(q) ̸= 0, we have ordℓ(

∏K
i=1Wi,k) = 0 for

each prime ℓ | q. Fix C0 := C0 ({Wi,k}1≤i≤K ;B0) to be any constant exceeding B0, (32D)2D+2,
the sizes of the leading and constant coefficients of {Wi,k}1≤i≤K , as well as the constant
C1(W1,k, . . . ,WK,k) coming from an application of Proposition 5.3 to the family {Wi,k}1≤i≤K
of multiplicatively independent polynomials. We will show that any such choice of C0 suffices.

We first consider the case D > 1; the case D = 1 will be dealt with towards the end of
the argument. For an arbitrary positive integer Q and coprime residues w1, . . . , wK mod Q,
an application of the orthogonality of Dirichlet characters yields

#V(k)
N,K

(
Q; (wi)

K
i=1

)
=

1

φ(Q)K

∑
χ1,...,χK mod Q

χ1(w1) · · ·χK(wK)(ZQ;χ1,...,χK
)N ,(5.5)

with ZQ;χ1,...,χK
:=
∑

v mod Q χ0,Q(v)
∏K

i=1 χi(Wi,k(v)) and χ0,Q the trivial character mod Q.
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Dealing with the large primes dividing q: We first show that there exists a constant
K ′ = K ′({Wi,k}1≤i≤K) such that uniformly in primes ℓ > C0 dividing q, we have

(5.6)
#V(k)

N,K

(
ℓe; (wi)

K
i=1

)
φ(ℓe)N


=
αk(ℓ)

N

φ(ℓe)K

(
1 +O

(
(4D)N

ℓN/D−K

))
, uniformly in N ≥ KD + 1

≤ K ′ e1N=KDℓ−eN/D, for each 1 ≤ N ≤ KD.

To show these, we start by applying (5.5) to get

(5.7)
#V(k)

N,K(ℓ
e; (wi)

K
i=1)

φ(ℓe)N

=
αk(ℓ)

N

φ(ℓe)K

{
1 +

1

(αk(ℓ)φ(ℓe))N

∑
(χ1,...,χK) ̸=(χ0,ℓ,...,χ0,ℓ) mod ℓe

(
K∏
i=1

χi(wi)

)
(Zℓe;χ1,...,χK

)N

}
,

where we have recalled that αk(ℓ) ̸= 0 since αk(q) ̸= 0. For any tuple (χ1, . . . , χK) ̸=
(χ0,ℓ, . . . , χ0,ℓ) mod ℓe, let ℓe0 := lcm[f(χ1), . . . , f(χK)] ∈ {ℓ, . . . , ℓe}. Using χ1, . . . , χK to also
denote the characters mod ℓe0 inducing χ1, . . . , χK respectively, we see that Zℓe;χ1,...,χK

=
ℓe−e0 Zℓe0 ; χ1,...,χK

. Moreover Uℓe0 is cyclic since ℓ > C0 > 2. Letting γ denote a generator
of Uℓe0 , we see that the character group mod ℓe0 is generated by the character ψe0 given
by ψe0(γ) := exp(2πi/φ(ℓe0)). Hence, there exists a tuple (A1, . . . , AK) ∈ [φ(ℓe0)] satisfying
χi = ψAi

e0
for each i, and since at least one of χ1, . . . , χK is primitive mod ℓe0 , we also have

(5.8) (A1, . . . , AK) ̸≡

{
(0, . . . , 0) (mod ℓ), if e0 > 1,

(0, . . . , 0) (mod ℓ− 1), if e0 = 1.

We can now write

(5.9) Zℓe; χ1,...,χK
= ℓe−e0 Zℓe0 ; χ1,...,χK

= ℓe−e0
∑

v mod ℓe0

ψe0

(
vφ(ℓ

e0 )

K∏
i=1

Wi,k(v)
Ai

)
.

Case 1: If e0 = 1, then since ℓ > C0 > B0, we have gcd(ℓ − 1, β(W1,k, . . . ,WK,k)) = 1.
Further, since ℓ > C0 > C1(W1,k, . . . ,WK,k), we see by (5.8) and Proposition 5.3(a) that∏K

i=1W
Ai
i,k cannot be of the form c · Gℓ−1 in Fℓ[T ]. As such, (5.9) and Proposition 5.1 show

that |Zℓe; χ1,...,χK
| ≤ Dℓe−1/2 for any tuple (χ1, . . . , χK) mod ℓe having e0 = 1.

Case 2: If e0 ≥ 2, then since ordℓ(
∏K

i=1Wi,k) = 0 and ℓ > C0 > C1(W1,k, . . . ,WK,k), Proposi-

tion 5.3 and (5.8) show that τ(ℓ) := ordℓ((T
φ(ℓe0 )

∏K
i=1Wi,k(T )

Ai)′) = 0 ≤ e0 − 2. Thus (5.9)
and Proposition 5.2(i) yield |Zℓe; χ1,...,χK

| ≤
(∑

θ∈Aℓ
µθ(Cℓ)

)
ℓe−e0/(Mℓ+1), where Aℓ ⊂ Fℓ denotes

the set of ℓ-critical points of the polynomial Tφ(ℓ
e0 )
∏K

i=1Wi,k(T )
Ai , namely the roots of Cℓ(T ) =

(Tφ(ℓ
e0 )
∏K

i=1Wi,k(T )
Ai)′ in Fℓ that are not roots of Tφ(ℓ

e0 )
∏K

i=1Wi,k(T )
Ai . But by the last as-

sertion in Proposition 5.3, we see that Mℓ ≤
∑

θ∈Aℓ
µθ(Cℓ) ≤ deg(

∑K
i=1AiW

′
i,k

∏
1≤j≤K
j ̸=i

Wj,k)

≤ D−1. This yields |Zℓe; χ1,...,χK
| ≤ Dℓe−e0/D for any tuple (χ1, . . . , χK) mod ℓe having e0 > 1.
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Combining the conclusions of Cases 1 and 2, and using the fact that there are at most ℓe0K

many tuples (χ1, . . . , χK) of characters mod ℓe having lcm[f(χ1), . . . , f(χK)] = ℓe0 , we get

(5.10)
1

(αk(ℓ)φ(ℓe))N

∑
(χ1,...,χK )̸=(χ0,ℓ,...,χ0,ℓ) mod ℓe

|Zℓe;χ1,...,χK
|N ≤ (4D)N

∑
1≤e0≤e

ℓe0(K−N/D),

where in the last inequality above, we have used the facts that D ≥ 2 and αk(ℓ) ≥ 1−D/(ℓ−
1) ≥ 1 −D/(C0 − 1) ≥ 1/2. Now if N ≥ KD + 1, then ℓK−N/D ≤ C

−1/D
0 ≤ 1/2, so that the

last sum in (5.10) is at most 2(4D)NℓK−N/D. On the other hand, if N ≤ KD, then the same
sum is ≪ e1N=KDℓe(K−N/D). Inserting these two bounds into (5.10) and (5.7) gives (5.6).

Dealing with the small primes dividing q: Now for an arbitrary q, we let q̃ :=
∏

ℓe∥q
ℓ≤C0

ℓe

denote the C0-smooth part of q. By (5.5),

(5.11) #V(k)
N,K

(
q̃; (wi)

K
i=1

)
=

1

φ(q̃)K

∑
χ1,...,χK mod q̃

χ1(w1) · · ·χK(wK)(Zq̃;χ1,...,χK
)N .

Given a constant C > C0, we fix κ to be any integer constant exceeding C · (30DCC0
0 )2C0 . Let

Q0 :=
∏

ℓe∥q̃ ℓ
min{e,κ} =

∏
ℓ≤C0

ℓmin{vℓ(q),κ} denote the largest (κ+1)-free divisor of q̃. Write the

expression on the right hand side of (5.11) as S ′ + S ′′, where

S ′ :=
1

φ(q̃)K

∑
χ1,...,χK mod q̃

lcm[f(χ1),...,f(χK)] is (κ+ 1)-free

χ1(w1) · · ·χK(wK)(Zq̃;χ1,...,χK
)N

denotes the contribution of those tuples (χ1, . . . , χK) mod q̃ for which lcm[f(χ1), . . . , f(χK)] is
(κ+ 1)-free, or equivalently, those (χ1, . . . , χK) for which lcm[f(χ1), . . . , f(χK)] divides Q0.

For each tuple (χ1, . . . , χK) counted in S ′, there exists a unique tuple (ψ1, . . . , ψK) of char-
acters mod Q0 inducing (χ1, . . . , χK) mod q̃, respectively. Noting that αk(q̃) = αk(Q0), a
straightforward calculation using (4.14) shows that

Zq̃;χ1,...,χK
=

∑
u mod Q0

χ0,Q0 (u)
K∏
i=1

ψi(Wi,k(u))
∑

v mod q̃
v≡u mod Q0

gcd(v
∏K

i=1Wi,k(v),q̃)=1

1 =
φ(q̃)

φ(Q0)
ZQ0; ψ1,...,ψK

Using this and invoking (5.5) with Q := Q0, we obtain

S ′

φ(q̃)N
=
φ(q̃)−K

φ(Q0)N

∑
ψ1,...,ψK mod Q0

(
K∏
i=1

ψi(wi)

)
(ZQ0;ψ1,...,ψK

)N =

(
φ(Q0)

φ(q̃)

)K #V(k)
N,K

(
Q0; (wi)

K
i=1

)
φ(Q0)N

(5.12)

We now deal with the remaining sum S ′′ which is the contribution of those (χ1, . . . , χK)
mod q̃ for which lcm[f(χ1), . . . , f(χK)] is not (κ + 1)-free. For each such (χ1, . . . , χK), we
factor χi =:

∏
ℓe∥q̃ χi,ℓ, where χi,ℓ is a character mod ℓe. With eℓ := vℓ (lcm[f(χ1), . . . , f(χK)]),

we observe that since f(χi) =
∏

ℓe∥q f(χi,ℓ) and each f(χi,ℓ) is a power of ℓ, we must have

lcm[f(χ1,ℓ), . . . , f(χK,ℓ)] = ℓeℓ . For each ℓe ∥ q̃, let (χ1,ℓ, . . . , χK,ℓ) also denote the characters
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mod ℓeℓ inducing (χ1,ℓ, . . . , χK,ℓ) mod ℓe respectively. Then at least one of χ1,ℓ, . . . , χK,ℓ must
be primitive mod ℓeℓ . The factorization Zq̃;χ1,...,χK

=
∏

ℓe∥q̃ Zℓe;χ1,ℓ,...,χK,ℓ
now yields

(5.13) |Zq̃;χ1,...,χK
| ≤

∏
ℓe∥q̃
eℓ≤κ

φ(ℓe)

 ∏
ℓe∥q̃

eℓ≥κ+1

(
ℓe−eℓ |Zℓeℓ ;χ1,ℓ,...,χK,ℓ

|
)
.

We claim that for all prime powers ℓe ∥ q̃ with eℓ ≥ κ+ 1, we have

(5.14) |Zℓeℓ ;χ1,ℓ,...,χK,ℓ
| ≤ (DCC0

0 ) ℓeℓ(1−1/D).

For odd ℓ, this follows essentially by the same argument as that given to bound Zℓe;χ1,...,χK

in “Case 2” before: The only difference is that this time we use both the assertions in
(5.1) since eℓ ≥ κ + 1 > (30DC0)

2C0 + 1 > C0 + 2. Now assume that ℓ = 2, i.e. e2 =
v2(lcm[f(χ1), . . . , f(χK)]) ≥ κ+ 1 ≥ 31. We shall use Proposition 5.2(ii).

To do this, we observe that the characters ψ, η mod 2e2 defined by

ψ(5) := exp(2πi/2e2−2), ψ(−1) := 1 and η(5) := 1, η(−1) := −1

generate the character group mod 2e2 . Hence for each i ∈ [K], there exist ri ∈ [2e2−2] and si ∈
[2] satisfying χi,2 = ψriηsi ; also 2 ∤ gcd(r1, . . . , rK) as e2 ≥ 4 and at least one of χ1,2, . . . , χK,2

is primitive mod 2e2 . Thus Z2e2 =
∑

v mod 2e2 ψ (g(v)) η
(
v2
∏K

i=1Wi,k(v)
si

)
, where g(T ) :=∏K

i=1Wi,k(T )
ri and we have abbreviated Z2e2 ;χ1,2,...,χK,2

to Z2e2 . Since η is induced by the
nontrivial character mod 4, writing v := 4u+ λ and hλ(T ) := g(4T + λ) gives
(5.15)

Z2e2 =
∑
λ=±1

η

(
K∏
i=1

Wi,k(λ)
si

) ∑
u mod 2e2−2

ψ (hλ(u)) =
1

4

∑
λ=±1

η

(
K∏
i=1

Wi,k(λ)
si

) ∑
u mod 2e2

ψ (hλ(u))

If η
(∏K

i=1Wi,k(λ)
si

)
̸= 0, then

∏K
i=1Wi,k(λ)

si ≡ 1 (mod 2), so ord2

(∏K
i=1Wi,k(4T + λ)ri−1

)
=

0. As such, with G̃ :=
∑K

i=1 riW
′
i,k

∏
j ̸=iWj,k, we see that

(5.16) τλ(2) := ord2(h
′
λ(T )) = 2 + ord2(G̃(4T + λ)) ≤ 2 + ord2(G̃) + 2 deg(G̃) ≤ C0 + 2D;

here we have used (5.1) and the fact that ord2(F (4T + λ)) ≤ ord2(F ) + 2 deg(F ) for any
nonconstant polynomial F . 7

Two consequences of (5.16) are that 2−(τλ(2)−2)G̃(4T+λ) ∈ Z[T ] and that τλ(2) ≤ κ−3 ≤ e2−3.
Thus Proposition 5.2(ii) applies, yielding

∣∣∑
u mod 2e2

ψ (hλ(u))
∣∣ ≤ (12.5)·2C0+2D·2e2(1−1/(Mλ+1)),

where Mλ is the maximum multiplicity of a 2-critical point of hλ. Since
∏K

i=1Wi,k(4T +
λ)ri−1 ≡ 1 (mod 2), it follows that any such critical point θ ∈ F2 is a root of the polynomial

2−(τλ(2)−2)G̃(4T + λ), giving Mλ ≤ deg G̃(4T + λ) ≤ D − 1, so that
∣∣∑

u mod 2e2
ψ (hλ(u))

∣∣ ≤
(12.5) · 2C0+2D · 2e2(1−1/D) ≤ DCC0

0 · 2e2(1−1/D). Inserting this into (5.15) completes the proof of
(5.14) in the remaining case ℓ = 2.

7This can be seen by writing the coefficients of F (4T + λ) in terms of those of F , and using a simple
divisibility argument.
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Combining (5.13) with (5.14), we find that for each (χ1, . . . , χK) counted in S ′′, we have
|Zq̃;χ1,...,χK

| ≤ (2D0C
C0
0 )C0φ(q̃)A−1/D0 , where A :=

∏
ℓe∥q̃: eℓ≥κ+1 ℓeℓ denotes the (κ + 1)-full

part of lcm[f(χ1), . . . , f(χK)], i.e, the largest (κ + 1)-full divisor of lcm[f(χ1), . . . , f(χK)]. Now
for a divisor d of q̃, there are at most dK many tuples (χ1, . . . , χK) of characters mod q̃ for
which lcm[f(χ1), . . . , f(χK)] = d. Hence, summing this last bound over all possible (χ1, . . . , χK)
occurring in the sum S ′′, we obtain

|S ′′| ≤ 1

φ(q̃)K

∑
A|q̃: A>1

A is (κ+1)-full

∑
d|q̃

(κ+1)-full part
of d is A

dK · (2D0C
C0
0 )C0Nφ(q̃)N

AN/D

≪ φ(q̃)N

φ(q̃)K
· (2D0C

C0
0 )C0N

∑
A|q̃: A>1

A is (κ+1)-full

1

AN/D−K .

In the last step above, we have noted that for any d dividing q̃ whose (κ + 1)-full part is A,
we have d≪ A. Continuing,

(5.17)
|S ′′|
φ(q̃)N

≪ (2D0C
C0
0 )C0N

φ(q̃)K

∏
ℓe∥q̃

(
1 +

∑
κ+1≤ν≤e

1

ℓν(N/D−K)

)
− 1

 .

Now if N ≥ KD + 1, then since κ > C · (30DCC0
0 )2C0 ≥ D(D + 3), we see that the sum on ν

above is at most 2−κ(N/D−K)
(
1− 2−1/D

)−1 ≤ 2D+2

2κ/D
≤ 1

2
. Hence log(1 +

∑
κ+1≤ν≤e ℓ

−ν(N/D−K))

≪ 2−κ(N/D−K) ≪ 2−κN/D. In addition, since P (q̃) ≤ C0, (5.17) gives
(5.18)

|S ′′|
φ(q̃)N

≪ (2D0C
C0
0 )C0N

φ(q̃)K

{
exp

(
O

(
1

2κN/D

))
− 1

}
≪ 1

φ(q̃)K
·
(
(2D0C

C0
0 )C0

2κ/D

)N
≪ C−N

φ(q̃)K
,

where in the last step, we have recalled that κ/D > D−1 · C · (30DCC0
0 )2C0 > C · (2C1)

C0 .
Combining (5.18) with (5.12), we deduce that

(5.19)
#V(k)

N,K

(
q̃; (wi)

K
i=1

)
φ(q̃)N

=
S ′ + S ′′

φ(q̃)N
=

(
φ(Q0)

φ(q̃)

)K {#V(k)
N,K

(
Q0; (wi)

K
i=1

)
φ(Q0)N

+O

(
1

CN

)}
,

uniformly for N ≥ KD + 1 and in coprime residues w1, . . . , wK to any modulus q.

On the other hand, for each N ∈ [KD], we have 1+
∑

κ+1≤ν≤e ℓ
−ν(N/D−K) ≪ e1N=KD ℓe(K−N/D),

which from (5.17), yields the bound |S ′′|/φ(q̃)N ≪
(∏

ℓe∥q̃ e
)
1N=KD

/
q̃N/D. Combining this

with the trivial bound |S ′|/φ(q̃)N ≪ φ(q̃)−K ≪ q̃−K ≪ q̃−N/D coming from (5.12), we find
that for each N ∈ [KD], we have

(5.20)
#V(k)

N,K

(
q̃; (wi)

K
i=1

)
φ(q̃)N

≪

(∏
ℓe∥q̃ e

)
1N=KD

q̃N/D
, uniformly in q and (wi)

K
i=1 ∈ UK

q .

Proposition 4.4 now follows in the case D > 1 by combining (5.6) with (5.19) (for N > KD)
or (5.20) (for N ≤ KD), and then noting that

∏
ℓ|q: ℓ>C0

αk(ℓ) = αk(q)/αk(Q0).
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Now assume that D = 1, so that K = 1 and W1,k(T ) := RT + S for some integers R
and S with R ̸= 0. We first make the following general observation, which is immediate from
Proposition 5.2: For any primitive character χmod ℓb, the sum Zℓb;χ :=

∑
v mod ℓb χ0,ℓ(v)χ(Rv+

S) =
∑

v mod ℓb χ(v
φ(ℓb)(Rv + S)) is zero for any odd prime ℓ and any integer b ≥ vℓ(R) + 2, as

well as for ℓ = 2 and any b ≥ v2(R) + 3. Indeed in both these cases, the polynomial F (T ) =

Tφ(ℓ
b)(RT + S) has no ℓ-critical point, since ordℓ(F

′) = vℓ(R) which forces ℓ−ordℓ(F
′)F ′(T ) =

(ℓ−vℓ(R)R)Tφ(ℓ
b) in Fℓ[T ].

By this observation, it follows that uniformly in N ≥ 1 and in ℓe ∥ q with ℓ > C0 (> |R|),

#V(k)
N,1(ℓ

e;w)

φ(ℓe)N
=
αk(ℓ)

N

φ(ℓe)

(
1 +O

(( 2

ℓ− 1

)N−1
))

.(5.21)

Indeed, we simply invoke (5.7) and note that if f(χ) = ℓe0 for some e0 ≥ 2 = vℓ(R) + 2, then
Zℓe;χ = 0 as seen above. On the other hand, if f(χ) = ℓ (and there are ℓ−2 many such characters
mod ℓe), then |Zℓe;χ| = ℓe−1 |

∑
v mod ℓ χ(Rv + S)− χ(S)| = ℓe−1 |

∑
u mod ℓ χ(u)− χ(S)| ≤ ℓe−1.

Letting q̃ :=
∏

ℓe∥q
ℓ≤C0

ℓe as before, we fix an integer κ > C0 + 3, and write #V(k)
N,1 (q̃;w) =

φ(q̃)−1∑
χ mod q̃ χ(w)(Zq̃;χ)

N = S ′ + S ′′, where S ′ again denotes the contribution of those χ

mod q̃ for which f(χ) is (κ+1)-free. Then (5.12) continues to hold, and S ′′ = 0 by the general

observation above. This yields #V(k)
N,1 (q̃;w)/φ(q̃)

N = (φ(Q0)/φ(q̃)) · (#V(k)
N,1 (Q0;w)/φ(Q0)

N),
which along with (5.21), establishes Proposition 4.4 in the remaining case D = 1. □

With Proposition 4.4 established, the proof of Proposition 4.3 is now complete. We will
eventually also need the following variant of Proposition 4.4, which follows from an argument
that is a much simpler version of that given for (5.6).

Corollary 5.4. Assume that {Wi,k}1≤i≤K are multiplicatively independent. Then

(5.22)
#V(k)

N,K

(
q; (wi)

K
i=1

)
φ(q)N

≪

{
φ(q)−K exp

(
O(
√
log q)

)
, for each fixed N ≥ 2K + 1

q−N/2 exp
(
O(ω(q))

)
, for each fixed N ≤ 2K,

uniformly in wi ∈ Uq modulo squarefree q satisfying αk(q) ̸= 0 and IFH(W1,k, . . . ,WK,k;B0).

Towards Theorem 4.2.
In order to deduce Theorem 4.2 from Proposition 4.3, we apply the orthogonality of Dirichlet
characters to see that the main term in the right hand side of (4.6) is equal to(

φ(Q0)

φ(q)

)K ∑
n≤x: (f(n),q)=1

(∀i) fi(n)≡ai (mod Q0)

1

=
1

φ(q)K

∑
n≤x

(f(n),q)=1

1+
1

φ(q)K

∑
(χ1,...,χK )̸=(χ0,Q0

,...,χ0,Q0
) mod Q0

(
K∏
i=1

χi(ai)

)∑
n≤x

1(f(n),q)=1

K∏
i=1

χi(fi(n)).
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Henceforth, let Q :=
∏

ℓ|q ℓ denote the radical of q. To obtain Theorem 4.2, it remains to

prove that each
∑

n≤x 1(f(n),q)=1

∏K
i=1 χi(fi(n)) = o

(∑
n≤x

(f(n),q)=1
1

)
. For Q ≪ 1, this follows

by applying Theorem N to the divisor Q∗ := lcm[Q,Q0] ≪ 1 of q. (Note that as q lies in
Q(k; f1, · · · , fK), so does Q∗, since q and Q∗ have the same prime factors.) So we may assume
that Q is sufficiently large. Theorem 4.2 would follow once we show the result below. Here λ
and Q0 are as in Proposition 4.3.

Theorem 5.5. There exists a constant δ0 := δ0(λ) > 0 such that, uniformly in moduli q ≤
(log x)K0 lying in Q(k; f1, · · · , fK) and having sufficiently large radical, we have∑

n≤x

χ1(f1(n)) · · ·χK(fK(n))1(f(n),q)=1 ≪ x1/k

(log x)1−(1−δ0)αk(Q)

for all tuples of characters (χ1, . . . , χK) ̸= (χ0,Q0 , . . . , χ0,Q0) mod Q0.

Let Ck(Q0) denote the set of tuples of characters (ψ1, . . . , ψK) mod Q0, not all trivial, such that∏K
i=1 ψi(Wi,k(u)) is constant on its support, which is precisely the set Rk(Q0) = {u ∈ UQ0 :

Wk(u) ∈ UQ0}. To prove Theorem 5.5, we separately consider the two cases when a tuple of
characters mod Q0 lies in Ck(Q0) or not.

6. Proof of Theorem 5.5 for nontrivial tuples of characters not in Ck(Q0)

For any integer d ≥ 1 and any nontrivial tuple (ψ1, . . . , ψK) of characters mod d not lying
in Ck(d), we have |

∑
u mod d χ0,d(u)ψ1(W1,k(u)) · · ·ψK(WK,k(u))| < αk(d)φ(d). With λ as in

Proposition 4.3, we define the constant δ1 := δ1(W1,k, . . . ,WK,k;B0) ∈ (0, 1) to be

max
d≤λ

αk(d) ̸=0

max
(ψ1,...,ψK )̸=(χ0,d,...,χ0,d) mod d

(ψ1,...,ψK) ̸∈ Ck(d)

1

αk(d)φ(d)

∣∣∣∣∣ ∑
u mod d

χ0,d(u)ψ1(W1,k(u)) · · ·ψK(WK,k(u))

∣∣∣∣∣ .
Then since Q0 ≤ λ, we have for any nontrivial tuple (χ1, . . . , χK) ̸∈ Ck(Q0),

(6.1)

∣∣∣∣∣ ∑
u mod Q0

χ0,Q0(u)χ1(W1,k(u)) · · ·χK(WK,k(u))

∣∣∣∣∣ ≤ δ1αk(Q0)φ(Q0).

We set δ := (1−δ1)/2 and Y := exp((log x)δ/3). To establish Theorem 5.5 for all (χ1, . . . , χK) ̸∈
Ck(Q0), it suffices to show that

(6.2)
∑
n≤x

p>Y =⇒ pk+1 ∤ n

χ1(f1(n)) · · ·χK(fK(n)) 1(f(n),q)=1 ≪ x1/k

(log x)1−(δ1+δ)αk
.

This is because by the arguments before (3.3), the contribution of the n’s not counted above
is negligible. Writing any n counted in (6.2) uniquely as BMAk (as done before (3.4)), we see
that the sum in (6.2) equals
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(6.3)
∑
B≤x

P (B)≤Y
B is k-free

1(f(B),q)=1

(
K∏
i=1

χi(fi(B))

) ∑
M≤x/B
M is k-full
P (M)≤Y

1(f(M),q)=1

(
K∏
i=1

χi(fi(M))

)

∑
A≤(x/BM)1/k

1P−(A)>Y 1(f(Ak),q)=1 µ(A)
2

K∏
i=1

χi(fi(A
k))

Moreover, the arguments leading to the bound for Σ2 towards the end of section 3 show that
the tuples (B,M,A) having M > x1/2 give negligible contribution to the above sum. To prove
(6.2), it thus only remains to bound the contribution of tuples (B,M,A) with M ≤ x1/2 to
the triple sum in (6.3). To deal with such tuples, we will establish the following general upper
bound uniformly for X ≥ exp((log Y )2):

(6.4)
∑
A≤X

1P−(A)>Y 1(f(Ak),q)=1 µ(A)
2

K∏
i=1

χi(fi(A
k)) ≪ X

(logX)1−αk(δ1+δ/2)
.

We apply a quantitative version of Halász’s Theorem [50, Corollary III.4.12] on the multiplica-

tive function F (A) := 1P−(A)>Y 1(f(Ak),q)=1 µ(A)
2
∏K

i=1 χi(fi(A
k)), taking T := logX. This

requires us to put, for each t ∈ [−T, T ], a lower bound on the sum below (which is the square
of a certain “pretentious distance”):

D(X; t) :=
∑
p≤X

1

p

(
1− Re

(
1p>Y 1(f(pk),q)=1 µ(p)

2 p−it

K∏
i=1

χi(fi(p
k))

))

= (1− αk) log2X + αk log2 Y +
∑

Y <p≤X
(Wk(p),q)=1

1

p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))

))

+O
(
(log2(3q))

O(1)
)
;

(6.5)

here the second line uses Lemma 3.4. To get this lower bound, we proceed analogously to the
proof of [37, Lemma 3.3]. The key idea is to split the range of the last sum above into blocks
of small multiplicative width, so that the complex number p−it is essentially constant for all p
lying in a given block. More precisely, we cover the interval (Y,X] with finitely many disjoint
intervals I :=

(
η, η(1 + 1/ log2X)

]
for certain choices of η ∈ (Y,X], choosing the smallest η to

be Y and allowing the rightmost endpoint of such an interval to jut out slightly past X but
no more than X(1 + 1/ log2X). Then the last sum in (6.5) equals∑

I

∑
p∈I

(Wk(p),q)=1

1

p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))

))
+O

(
1

log3X

)
(6.6)

Consider any I occurring in the sum above. For each p ∈ I, we have

|p−it − η−it| ≤
∣∣∣∣∫ t log p

t log η

exp(−iϱ) dϱ
∣∣∣∣ ≤ |t log p− t log η| ≤ |t|

log2X
≤ 1

logX
.

This shows that uniformly in I, the inner sum in (6.6) is equal to
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(6.7)
∑
p∈I

(Wk(p),q)=1

1

p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))

))

=
∑
u∈Uq

(Wk(u),q)=1

(
1− Re

(
η−it

K∏
i=1

χi(Wi,k(u))

)) ∑
p∈I

p≡u (mod q)

1

p
+O

(
1

logX

∑
p∈I

1

p

)

Note that p = (1 + o(1))η for all p ∈ I. (Here and in what follows, the asymptotic notation
refers to the behavior as x → ∞, and is uniform in the choice of I.) For parameters Z,W
depending on X, we write Z ≳ W to mean Z ≥ (1 + o(1))W . By the Siegel Walfisz Theorem,∑

p∈I
p≡u (mod q)

1

p
≳

1

η

∑
p∈I

p≡u (mod q)

1 ≳
1

φ(q)
· 1
η

∑
p∈I

1 ≳
1

φ(q)

∑
p∈I

1

p
.

Hence the whole main term on the right hand side of (6.7) is

≳
1

φ(q)

∑
p∈I

1

p

∑
u∈Uq

(Wk(u),q)=1

(
1− Re

(
η−it

K∏
i=1

χi(Wi,k(u))

))
≳ (αk − αkδ1)

(∑
p∈I

1

p

)
,(6.8)

where in the last step above, we have used (4.14) and (6.1) to see that

1

φ(q)

∣∣∣∣∣ ∑
u∈Uq

(Wk(u),q)=1

K∏
i=1

χi(Wi,k(u))

∣∣∣∣∣ = αk(q)

αk(Q0)φ(Q0)

∣∣∣∣∣ ∑
r mod Q0

χ0,Q0(r)
K∏
i=1

χi(Wi,k(r))

∣∣∣∣∣ ≤ αkδ1.

Inserting the bound obtained in (6.8) into (6.7), we find that each inner sum in (6.6) is∑
p∈I

(Wk(p),q)=1

1

p

(
1− Re

(
p−it

K∏
i=1

χi(Wi,k(p))

))
≳ αk(1− δ1)

∑
p∈I

1

p
+O

(
1

logX

∑
p∈I

1

p

)
.

The O-term above when summed over all I is ≪ (logX)−1
∑

p≤2X p
−1 ≪ log2X/ logX. Thus,

the whole main term in (6.6) is at least αk
(
1− δ1 − δ

2

)
(log2X− log2 Y ). Using this fact along

with (6.5) yields

D(X; t) ≥
(
1− αk

(
δ1 +

δ

2

))
log2X + αk

(
δ1 +

δ

2

)
log2 Y +O

(
(log2(3q))

O(1)
)
,

uniformly for t ∈ [−T, T ]. As such, [50, Corollary III.4.12] establishes the claimed bound (6.4).

Now for each M ≤ x1/2, we have (x/BM)1/k ≫ x1/2k. Applying (6.4) to each of the innermost
sums in (6.3), we see that the total contribution of all tuples (B,M,A) with M ≤ x1/2 to the
triple sum in (6.3) is

≪
∑
B≪1

∑
M≤x1/2: M is k-full
P (M)≤Y, (f(M),q)=1

(x/BM)1/k

(log x)1−αk(δ1+δ/2)
≪ x1/k

(log x)1−αk(δ1+δ)
;
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here we have bounded the sum onM using (3.5) (with “Y ” playing the role of “y”) and Lemma
3.4. This proves (6.2), and hence also Theorem 5.5 for all nontrivial tuples of characters
(χ1, . . . , χK) mod Q0 not in Ck(Q0). □

7. Proof of Theorem 5.5 for tuples of characters in Ck(Q0)

It suffices to consider the case when x is an integer, and we will do so in the rest of the section.
Our argument consists of suitably modifying the Landau–Selberg–Delange method for mean
values of multiplicative functions (see for instance [50, Chapter II.5]), and to study the behavior
of a product of L-functions raised to complex powers by accounting for the presence of Siegel
zeros modulo q. This is partly inspired from work of Scourfield [45] and will also need some
results from her paper. We will denote complex numbers in the standard notation s = σ+ it.8

Recall that Q =
∏

ℓ|q ℓ; since q is k-admissible, so is Q. Consider any χ̂ := (χ1, . . . , χK) ∈
Ck(Q0), so that the product

∏K
i=1 χi(Wi,k(u)) is constant on Rk(Q0); let cχ̂ denote this constant

value. Consider the Dirichlet series

Fχ(s) :=
∑
n≥1

1(f(n),q)=1

ns

K∏
i=1

χi(fi(n)) =
∑
n≥1

1(f(n),Q)=1

ns

K∏
i=1

χi(fi(n))

which is absolutely convergent in the half-plane σ > 1.

In the rest of this section, we fix µ0 satisfying max{0.7, k/(k + 1)} < µ0 < 1.

7.1. Analysis of the Dirichlet series.
We start by giving a meromorphic continuation of Fχ(s) to a larger region. To do this, set
LQ(t) := log(Q(|tk| + 1)) and recall that there exists an absolute constant c1 > 0 such that
the product

∏
ψ mod Q L(s, ψ) has at most one zero βe (counted with multiplicity) in the region

σ > 1− c1/ log(Q(|t|+ 1)), which is necessarily real and simple; βe is called the “Siegel zero”.
If βe exists, then it is a root of L(s, ψe) for some real character ψe mod Q, which we will be
referring to as the “exceptional character”. By reducing the constant c1 if necessary, we may
assume that c1 < 1 − µ0, and that the conductor of ψe (which is squarefree) is large enough
that it is not (D + 2)-smooth.

Let Dk(c0) denote the region
{
σ + it : σ > 1

k

(
1− c1

LQ(t)

)}
. Then

∏
ψ mod Q L(sk, ψ) has at

most one zero and exactly one pole in the region Dk(c0), namely βe/k and 1/k, respectively.

Branch cuts and complex logarithms: In the rest of the section, we assume that the
complex plane has been cut along the line σ ≤ 1/k if αk(Q) and cχ̂ are not both 1, whereas if
αk(Q) = cχ̂ = 1, then the complex plane is cut along the line σ ≤ βe/k. (If αk(Q) = cχ̂ = 1
and if there is also no Siegel zero mod q, then there is no cut.)

Lemma 7.1. The Dirichlet series Fχ(s) is absolutely convergent on the half-plane σ > 1
k
,

where it satisfies

(7.1) Fχ(s) = F1(sk)
cχ̂ g(sk)cχ̂ Gχ,1(s) Gχ,2(s)

8The parameters σ and σk (to be defined later) in this section have nothing to do with the divisor functions
σr(n) =

∑
d|n d

r mentioned in the introduction. We are not working with the divisor functions in this section.
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with

F1(sk) =

∏
Q1|Q

∏
ψ mod Q1
ψ primitive

L(sk, ψ)γ(ψ)


αk(Q)

g(sk) =

∏
Q1|Q

∏
ψ mod Q1
ψ primitive

∏
ℓ| Q

Q1

(
1− ψ(ℓ)

ℓks

)γ(ψ)
αk(Q)

, γ(ψ) =
1

αk(Q)φ(Q)

∑
v∈UQ

Wk(v)∈UQ

χ(v).

Here, the functions F1(sk), g(sk), Gχ,1(s) and Gχ,2(s) satisfy the following properties:

(i) F1(sk) is holomorphic and nonvanishing in the region Dk(c0) − (−∞, 1/k]. 9 In fact,
if αk(Q) = cχ̂ = 1 and if βe exists (resp. doesn’t exist), then the same is true in the
bigger region Dk(c0)− (−∞, βe/k] (resp. Dk(c0)).

(ii) g(sk) and Gχ,1(s) are holomorphic and nonvanishing in the half-plane σ > µ0/k, and
we have, uniformly for all s in this region,

(7.2) max

{∣∣∣∣g′(sk)g(sk)

∣∣∣∣ , ∣∣∣∣G′
χ,1(s)

Gχ,1(s)

∣∣∣∣}≪ max{1, (logQ)1−σk} log logQ.

(iii) Gχ,2(s) is holomorphic in the half-plane σ > µ0/k, wherein |Gχ,2(s)|, |G′
χ,2(s)| ≪ 1.

Proof. Absolute convergence of Fχ(s) on the region σ > 1/k: To see this, we start by
noting that Fχ(s) is tautologically absolutely convergent on σ > 1, and in this half plane, we
have the Euler product

(7.3) Fχ(s) =
∏
p

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(p
v))

)
.

In the rest of the proof, we fix Bk > 2k/µ0 such that Bk exceeds any k-free integer n satisfying
gcd(f(n), q) = 1; recall that by Lemma 3.3, Bk can be chosen to depend only on {Wi,v}1≤i≤K

1≤v≤k
.

Then the contribution of primes p ≤ Bk to the aforementioned Euler product is a finite
product, each factor of which is absolutely convergent in the region σ > 0. On the other
hand, by Lemma 3.3 and the facts that Q is k-admissible and (χ1, . . . , χK) ∈ Ck(Q0), the total
contribution of all primes p > Bk to the above Euler product (7.3) is

(7.4)
∏
p>Bk

(
1 +

cχ̂1(Wk(p),Q)=1

pks
+O

(
1

p(k+1)σ

))
,

which is absolutely convergent in the region σ > 1/k, since the sum
∑

p cχ̂1(Wk(p),Q)=1/p
ks is.

This shows that Fχ(s) is absolutely convergent on the region σ > 1/k.

The product decomposition (7.1): Thus (7.3) holds in the region σ > 1/k, and in this
same region, we may write

9This region is obtained by omitting the ray (−∞, 1/k] from the region Dk(c0).
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(7.5) Fχ(s) =

 ∏
b∈UQ

Wk(b)∈UQ

∏
p≡b (mod Q)

(
1− 1

pks

)−cχ̂

 ·

 ∏
p|Q

Wk(p)∈UQ

(
1− 1

pks

)−cχ̂


·
∏
p

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(p
v))

)(
1−

1(Wk(p),Q)=1

pks

)cχ̂
Now for σ > 1/k, the orthogonality of Dirichlet characters modQ and the fact that logL(sk, ψ) =∑

p,v ψ(p
v)/pvsk show that the logarithm of the first double product in (7.5) is equal to

cχ̂
∑
b∈UQ

Wk(b)∈UQ

∑
p,v≥1

p≡b (mod Q)

1

vpvks
= cχ̂

∑
b∈UQ

Wk(b)∈UQ


1

φ(Q)

∑
ψ mod Q

ψ(b)
∑
p

ψ(p)

pks
+

∑
p,v≥2

p≡b (mod Q)

1

vpvks


= αk(Q)cχ̂

∑
ψ mod Q

γ(ψ) logL(sk, ψ)+cχ̂
∑
b∈UQ

Wk(b)∈UQ

∑
v≥2

 ∑
p≡b (mod Q)

1

vpvks
−

∑
p: pv≡b (mod q)

1

vpvks

 .

We insert this into (7.5), noting that L(sk, ψ) = L(sk, ψ∗)
∏

ℓ| Q
Q1

(1 − ψ∗(ℓ)/ℓsk) and that

γ(ψ) = γ(ψ∗) if the primitive character ψ∗ mod Q1 induces ψ mod Q. This yields (7.1), with

Gχ,2(s) :=
∏
p≤Bk

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(p
v))

)(
1−

1(Wk(p),Q)=1

pks

)cχ̂
and

(7.6) Gχ,1(s) :=
∏
p>Bk

(
1 +

∑
v≥1

1(f(pv),Q)=1

pvs

K∏
i=1

χi(fi(p
v))

)(
1−

1(Wk(p),Q)=1

pks

)cχ̂

·
∏
p|Q

Wk(p)∈UQ

(
1− 1

pks

)−cχ̂
· exp

cχ̂ ∑
b∈UQ

Wk(b)∈UQ

∑
v≥2

 ∑
p≡b (mod Q)

1

vpvks
−

∑
p: pv≡b (mod q)

1

vpvks


 ,

where Bk was as defined after (7.3).

Proving statements (i)–(iii) of the lemma: To see (i), recall that
∏

ψ mod Q L(sk, ψ) has

is holomorphic and nonvanishing in the region Dk(c0) − (−∞, 1/k]. In fact, if αk(Q) = cχ̂ =

1, then F1(sk) = L(sk, χ0) ·
(∏

Q1|Q
Q1>1

∏
ψ mod Q1
ψ primitive

L(sk, ψ)γ(ψ)
)αk(Q)

, which shows the other

assertions of (i). Also (iii) is immediate by a direct calculation using the definition of Gχ,2(s).

We thus focus on (ii). By the very definition of g(sk), we see that it is holomorphic and
nonvanishing in the half-plane σ > 0. Also the bound on |g′(sk)/g(sk)| in (7.2) is an immediate
consequence of [45, Lemma 9(ii)].
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To show the assertions for Gχ,1(s), we recall that by the arguments preceding (7.4) the first
product (over primes p > Bk) in (7.6) is equal to∏
p>Bk

(
1 +

cχ̂1(Wk(p),Q)=1

pks
+O

(
1

p(k+1)σ

))(
1−

1(Wk(p),Q)=1

pks

)cχ̂
=

∏
p>Bk

(
1 +O

(
1

p(k+1)σ

))
,

which is absolutely convergent and defines a holomorphic function in the half plane σ > µ0/k.
(Here is it important that µ0/k > 1/(k + 1).) Likewise the exponential factor in (7.6) defines
a holomorphic function in the same half plane, hence so does Gχ,1(s). To see that Gχ,1(s)
is also nonvanishing in this region, we need only see that the condition p > Bk > 2k/µ0

guarantees that each of the factors 1+
∑

v≥1

1(f(pv),Q)=1

pvs

∏K
i=1 χi(fi(p

v)) in (7.6) has size at least

1 −
∑

v≥k p
−vσ > 1 − 2p−kσ > 1 − 2B−µ0

k > 0. Finally, a straightforward computation using
(7.6) shows that for σ > µ0/k, we have

G′
χ,1(s)

Gχ,1(s)
= −cχ̂k

∑
p|Q

Wk(p)∈UQ

log p

pks
+O(1) ≪

∑
p|Q

log p

pkσ
,

completing the proof of (7.2) via [45, Lemma 3(i)(a)]. □

7.2. Preparing for the contour shift: Auxiliary functions and intermediate bounds.
Our objective is to relate the sum in Theorem 5.5 to the Dirichlet series Fχ(s) by an effective
version of Perron’s formula, and shift the contour to the left of the line σ = 1/k. As such, we
will need the following proposition in order to estimate the resulting integrals.

To set up, we choose ϵ1 := ϵ1(λ) to be a constant (depending only on λ) satisfying 0 < ϵ1 <
1− cos(2π/d) for any positive integer d ≤ λ. Consider the functions

F̃χ(s) := F1(sk)
cχ̂ g(sk)cχ̂ Gχ,1(s)

H̃χ(s) := F̃χ(s)

(
s− 1

k

)αk(Q)cχ̂
(
s− βe

k

)−αk(Q)cχ̂γ(ψe)

, Hχ(s) :=
F̃χ(s)

s

(
s− 1

k

)αk(Q)cχ̂

,

where here and in what follows, any term or factor involving βe is to be understood as omitted
if the Siegel zero doesn’t exist. By Lemma 7.1(i) and (ii), we see that:

1. F̃χ(s) is holomorphic and nonvanishing on Dk(c0)− (−∞, 1/k]. If αk(Q) = cχ̂ = 1 and if βe
exists (resp. doesn’t exist), then the same is true on Dk(c0)− (−∞, βe/k] (resp. Dk(c0)).

2. Hχ(s) analytically continues into and is nonvanishing on Dk(c0)− (−∞, βe/k].

3. H̃χ(s) analytically continues into and is nonvanishing on Dk(c0).

(Recall our branch cut conventions elucidated at the start of the section.)

In what follows, we set T := exp(
√
log x).

Proposition 7.2. We have the following bounds:

(i) |Hχ(1/k)| ≪ (log x)αk(Q)ϵ1/5.

(ii) |H̃χ(s)| ≪ (log x)αk(Q)ϵ1/4 uniformly for real s satisfying 1
k

(
1− c1

4 logQ

)
≤ s ≤ 1

k
.
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(iii) |Fχ(s)| ≪ (log x)(1/2+ϵ1)αk(Q) uniformly for complex numbers s = σ + it satisfying σ ≥
1
k

(
1− c1

2LQ(t)

)
, |t| ≤ T and |s− θ/k| ≫ 1/LQ(t) for θ ∈ {1, βe}.

(iv) Uniformly in real s ≤ 1/k satisfying s ≥ 1
k

(
2
3
+ βe

3

)
(if the Siegel zero exists) or s ≥

1
k

(
1− c1

4 logQ

)
(otherwise), we have∣∣∣∣Hχ

(
1

k

)
Gχ,2

(
1

k

)
−Hχ(s)Gχ,2(s)

∣∣∣∣≪ (log x)(1/20+αk(Q)/5)ϵ1

(
1

k
− s

)
.

Proof.

General observation: We have |H̃χ(s)| ≍ |H̃χ(w)| uniformly in complex numbers s and w

satisfying Im(s) = Im(w) =: t, and |s− w| ≪ LQ(t)−1 and Re(w) ≥ Re(s) ≥ 1
k

(
1− c1

2LQ(t)

)
.

Indeed by the definitions of H̃χ(s) and F̃χ(s), we have

(7.7)

∣∣∣∣∣H̃ ′
χ(z)

H̃χ(z)

∣∣∣∣∣ =
∣∣∣∣cχ̂k(F ′

1(kz)

F1(kz)
+
αk(Q)

kz − 1
− αk(Q)γ(ψe)

kz − βe

)
+ cχ̂k

g′(kz)

g(kz)
+
G′
χ,1(z)

Gχ,1(z)

∣∣∣∣≪ LQ(t)

uniformly for complex numbers z = u + it satisfying u ≥ 1
k

(
1− c1

2LQ(t)

)
. In the last bound

above, we have used (7.2) as well as [45, Lemma 15(i)] with “ξ” being exp(6LQ(t)). The general
observation now follows by writing log

(
H̃χ(w)/H̃χ(s)

)
=
∫ Re(w)

Re(s)
H̃ ′
χ(u+ it)/H̃χ(u+ it) du.

(i) Let bk(t) :=
1
k

(
1 + c3

LQ(t)

)
for some absolute constant c3 > 0. By the above observation and

the definitions of F̃χ(s), H̃χ(s) and Hχ(s), we see that

∣∣∣∣Hχ

(
1

k

)∣∣∣∣≪ ∣∣∣∣H̃χ

(
1

k

)∣∣∣∣ (1− βe)
−αk(Q) ≪ |H̃χ(bk(0))| (1− βe)

−αk(Q)

(7.8)

≪ |F̃χ(bk(0))| (logQ)(1− βe)
−2αk(Q) ≪ |F1(kbk(0))g(kbk(0))|Re(cχ̂) (logQ)2(1− βe)

−2αk(Q).

Here in the last bound, we have noted that |Gχ,1(bk(0))| ≪ log2Q, as is evident from the fact
that

∏
p|Q

Wk(p)∈UQ

(1− p−kbk(0))−1 ≪ exp(
∑

p|Q 1/p) ≪ exp(
∑

p≤ω(Q) 1/p) ≪ logω(Q) ≪ log2Q.

Now proceeding as in [45, Lemma 8], we see that for all s with σ > 1/k, we have

(7.9)
∑
n≥1

1(f(nk),Q)=1

nks
= F1(ks) g(ks) G̃(s),

where

G̃(s) =
∏
p

(
1 +

∑
v≥2

1

pvks
(1(f(pkv),Q)=1 − 1(Wk(p),Q)=1 1(f(pk(v−1)),Q)=1)

)
·
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∏
p|Q

Wk(p)∈UQ

(
1− 1

pks

)−1

· exp

 ∑
b∈UQ

Wk(b)∈UQ

∑
v≥2

 ∑
p≡b (mod Q)

1

vpvks
−

∑
p: pv≡b (mod Q)

1

vpvks


 .

Uniformly for s with σ ≥ 1/k, we observe that the infinite product above has size at least
1 −

∑
p,v≥2 1/p

v ≫ 1 and at most exp(
∑

p,v≥2 1/p
v) ≪ 1. Likewise, the exponential factor

has size ≍ 1 in the same region. Moreover, for σ ≥ 1/k, the product over p | Q is ≍
| exp(

∑
p|Q: (Wk(p),Q)=1 p−ks)|, which is ≫ 1 and ≪ exp(

∑
p|Q p−1) ≪ log2Q. Putting these

observations together, we find that

(7.10) 1 ≪ G̃(s) ≪ log2Q, uniformly in complex numbers s having σ ≥ 1/k.

Applying this lower bound on G̃(bk(0)), the equality (7.9) yields

|F1(kbk(0)) g(kbk(0))| ≪
∑
n≥1

1(f(nk),Q)=1

nkbk(0)
≤ ζ(kbk(0)) =

1

kbk(0)− 1
+O(1) ≪ logQ,

so that from (7.8), we obtain |Hχ(1/k)| ≪ (logQ)3(1− βe)
−2αk(Q). Subpart (i) now follows as

Q ≤ (log x)K0 and as 1− βe ≫ϵ1 Q
−ϵ1/20K0 ≫ϵ1 (log x)

−ϵ1/20 by Siegel’s Theorem.

(ii) By the general observation at the start of the proof, we have |H̃χ(s)| ≪ |H̃χ(1/k)| ≪
|Hχ(1/k)|(1− βe)

−αk(Q) ≪ |Hχ(1/k)|(log x)αk(Q)ϵ1/20. The result now follows from (i).

(iii) By the same general observation, we have |H̃χ(s)| ≪ |H̃χ(bk(t)+it)|, and since |s−θ/k| ≫
1/LQ(t), we have bk(t) + it− θ/k ≍ s− θ/k for θ ∈ {1, βe}. Thus |F̃χ(s)| ≪ |F̃χ(bk(t) + it)|.
(Recall that H̃χ(s) := F̃χ(s)

(
s− 1

k

)αk(Q)cχ̂
(
s− βe

k

)−αk(Q)cχ̂γ(ψe)
.) Using (7.6) and replicating

the arguments that led to (7.10), we also obtain

(7.11) (log2Q)
−1 ≪ Gχ,1(s) ≪ log2Q, uniformly in complex numbers s having σ ≥ 1/k.

Thus uniformly for s as in subpart (iii) of the proposition, we have

|F̃χ(s)| ≪ |F̃χ(bk(t) + it)| ≪ (log2Q) · |F1(k(bk(t) + it))g(k(bk(t) + it))|Re(cχ̂).

(Recall that F̃χ(s) = F1(sk)
cχ̂ g(sk)cχ̂ Gχ,1(s).) Next by (7.9) and (7.10), we get |F̃χ(s)| ≪

(log2Q)
∣∣∑

n≥1 1(f(nk),Q)=1/n
k(bk(t)+it)

∣∣Re(cχ̂) ≪ (log2Q)
(∑

n≥1 1(f(nk),Q)=1/n
kbk(t)

)Re(cχ̂). By (7.9),

(7.10) and (7.11), we get |F̃χ(s)| ≪ (log2Q)
2|F1(kbk(t))g(kbk(t))|Re(cχ̂) ≪ (log2Q)

3|F̃χ(bk(t))|.

By definitions of bk(t) and H̃χ(bk(t)), the last bound gives

|F̃χ(s)| ≪ (log3 x)
3|H̃χ(bk(t))|LQ(t)αk(Q)(1− βe)

−αk(Q).

Finally, recall that |t| ≤ T = exp(
√
log x), that 1−βe ≫ϵ1 (log x)

−ϵ1/20, and that |H̃χ(bk(t))| ≪
|H̃χ(1/k)| ≪ (log x)αk(Q)ϵ1/4 (by subpart (ii) the general observation at the start of the proof).

This yields |F̃χ(s)| ≪ (log x)αk(Q)(1/2+ϵ1). Lemma 7.1(iii) now proves the assertion.

(iv) It suffices to show that uniformly for s satisfying the same conditions as in this subpart,

(7.12) |Hχ(s)|+ |H ′
χ(s)| ≪ (log x)αk(Q)ϵ1/5

(
logQ+

1

1− βe

)
.



EQUIDISTRIBUTION OF FAMILIES OF MULTIPLICATIVE FUNCTIONS I 37

(Here as usual, the second term on the right is omitted if there is no Siegel zero, otherwise
it dominates.) Indeed once we establish (7.12), then from the bound 1− βe ≫ϵ1 (log x)

−ϵ1/20,
it follows that |Hχ(s)|+ |H ′

χ(s)| ≪ (log x)(1/20+αk(Q)/5)ϵ1 , which combined with Lemma 7.1(iii)

and the observation |Hχ(1/k)Gχ,2 (1/k)−Hχ(s)Gχ,2(s)| =
∣∣∣∫ 1/k

s
(Hχ(u)Gχ,2(u))

′ du
∣∣∣ completes

the proof of the subpart.

To show (7.12), we recall that Hχ(s) is non-vanishing for s as in the subpart. Further (7.7)
applies with z = s for all s considered in this subpart, yielding∣∣∣∣H ′

χ(s)

Hχ(s)

∣∣∣∣ =
∣∣∣∣∣H̃ ′

χ(s)

H̃χ(s)
− 1

s
+
αk(Q)cχ̂γ(ψe)

s− βe/k

∣∣∣∣∣≪ LQ(0) + 1 +
1

1− βe
≪ logQ+

1

1− βe
.

As a consequence,∣∣∣∣log Hχ(1/k)

Hχ(s)

∣∣∣∣ =
∣∣∣∣∣
∫ 1/k

s

H ′
χ(u)

Hχ(u)
du

∣∣∣∣∣≪
(
1

k
− s

)(
logQ+

1

1− βe

)
≪ 1,

showing that |Hχ(s)| ≍ |Hχ(1/k)| uniformly for all s in the statement. Collecting these bounds,
we obtain for all such s,

|Hχ(s)|+|H ′
χ(s)| ≪

∣∣∣∣Hχ

(
1

k

)∣∣∣∣+∣∣∣∣H ′
χ(s)

Hχ(s)

∣∣∣∣·∣∣∣∣ Hχ(s)

Hχ(1/k)

∣∣∣∣·∣∣∣∣Hχ

(
1

k

)∣∣∣∣≪ ∣∣∣∣Hχ

(
1

k

)∣∣∣∣ (logQ+
1

1− βe

)
,

so that the desired bound (7.12) now follows from subpart (i). This concludes the proof. □

7.3. Perron’s formula and the contour shifts. We first show that there is some X suffi-
ciently close to x for which the error term arising from an effective Perron’s formula is small.

Lemma 7.3. Let h := x/ log2 x. There exists a positive integer X ∈ (x, x+ h] satisfying∑
3X/4<n<5X/4

n̸=X

1(f(n),Q)=1

| log(X/n)|
≪ X1/k logX.

Proof. This would follow once we show that

(7.13)
∑

x<X≤x+h

∑
3X/4<n<5X/4

n̸=X

1(f(n),Q)=1

| log(X/n)|
≪ x1/kh log x,

with the outer sum being over integers X ∈ (x, x + h]. (Recall that x ∈ Z+ in this entire
section.) To show this, we write the sum on the left hand side as S1 + S2, where S1 denotes
the contribution of the case 3X/4 < n ≤ X− 1. Writing any n contributing to S1 as X− v for
some integer v ∈ [1, X/4), we see that | log(X/n)| = − log(1− v/X) ≫ v/X ≫ v/x. Recalling
that n = Bm for some k-free B of size O(1) and some k-full m, we thus have

S1 ≤
∑

3x/4<n<x+h

∑
x<X≤x+h

n+1≤X<4n/3

1(f(n),Q)=1

| log(X/n)|
≪ x

∑
B≪1

∑
3x
4B
<m<x+h

B
m is k-full

∑
1≤v<x+h

4
x<v+Bm≤x+h

1

v
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≪ x
∑

1≤v≤x+h
4

1

v

∑
B≪1

∑
x−v
B
<m≤x−v+h

B
m is k-full

1 ≪ x log x

(
x1/k

h

x
+ x1/(k+1)

)
≪ x1/kh log x,

where we have bounded the last inner sum on m using the Erdös-Szekeres estimate on the
count of k-full integers (see [14]). This shows that the sum S1 is bounded by the right hand
expression in (7.13). Similarly so is the sum S2, thus establishing (7.13). □

To complete the proof of Theorem 5.5, it suffices to establish the bound therein for X in place
of x, for once we do so, we may simply note that∣∣∣ ∑

x<n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),q)=1

∣∣∣ ≤ ∑
x<n≤X

1(f(n),Q)=1 ≤
∑
B≪1

∑
x
B
<m≤X

B
m is k-full

1 ≪ x1/k

log2 x
.

To show the bound in Theorem 5.5 for X, we start by applying an effective version of Perron’s
formula [50, Theorem II.2.3]. To bound the resulting error, we use Lemma 7.3 and note that

X
1
k(1+

1
logX )

 ∑
n≤3X/4

+
∑

n≥5X/4

 1(f(n),Q)=1

T | log(X/n)|n
1
k(1+

1
logX )

≪ X1/k

T

∑
B≪1

∑
m≥1

m is k-full

1

m
1
k(1+

1
logX )

≪ X1/k

T

∏
p

(
1 +

1

p1+1/ logX
+O

(
1

p1+1/k

))
≪ X1/k

T
exp

(∑
p

1

p1+1/ logX

)
≪ X1/k logX

T
,

with the last bound above being a consequence of Mertens’ Theorem along with the fact that∑
p>X

1

p1+1/ logX
≤
∑
j≥0

∑
X2j<p≤X2j+1

1

p1+1/ logX
≤
∑
j≥0

exp(−2j)
∑

X2j<p≤X2j+1

1

p
≪ 1.

(Recall that T = exp(
√
log x) ≥ exp

(
1
2

√
logX

)
.) As such, [50, Theorem II.2.3] yields

(7.14)∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 =
1

2πi

∫ 1
k(1+

1
logX )+iT

1
k(1+

1
logX )−iT

Fχ(s)X
s

s
ds+O

(
X1/k logX

T

)
.

Our arguments will be divided into three possibilities:
Case 1: When (αk(Q), cχ̂) ̸= (1, 1) and there is a Seigel zero βe mod Q.
Case 2: When (αk(Q), cχ̂) ̸= (1, 1) and there is no Seigel zero mod Q.
Case 3: When (αk(Q), cχ̂) = (1, 1).
In Case 1, we will be assuming henceforth that βe > 1 − 5c1

24 logQ
; otherwise decreasing c1

reduces to Case 2. Let β∗ := 2
3
+ βe

3
and σk(t) := 1

k

(
1− c1

4LQ(t)

)
, so that βe

k
> σk(0). Let

δ, δ1 ∈ (0, βe/10k) satisfy σk(0) <
βe
k
− 2δ1 <

βe
k
+ 2δ1 <

β∗

k
< 1

k
− 2δ. Consider the contours

• Γ2, the horizontal segment traversed from 1
k

(
1 + 1

logX

)
+ iT to σk(T ) + iT .

• Γ3, the part of the curve σk(t) + it traversed from t = T to t = 0.

• Γ4 := Γ4(δ1), the segment traversed from σk(0) to βe/k − δ1 above the branch cut.
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• Γ5 := Γ5(δ1), the semicircle of radius δ1 centered at βe/k, lying in the upper half plane
and traversed clockwise.

• Γ6 := Γ6(δ1), the segment traversed from βe/k + δ1 to β∗/k above the branch cut.

• Γ7 := Γ7(δ), the segment traversed from β∗/k to 1/k − δ above the branch cut.

• Γ8 := Γ8(δ), the circle of radius δ centered at 1/k, traversed clockwise from the point
1/k − δ above the branch cut to its reflection below the branch cut.

• Γ∗
4 := Γ∗

4(δ), the segment traversed from σk(0) to 1/k − δ above the branch cut.

• Γ∗
5 := Γ∗

5(δ1), the circle of radius δ1 centered at βe/k, traversed clockwise from the point
βe/k − δ1 above the branch cut to its reflection below the branch cut.

Here Γ∗
5(δ1) is relevant only when our branch cut is along σ ≤ βe/k (i.e., when αk(Q) = cχ̂ = 1

and βe exists), while the rest of the contours are defined irrespective of the branch cut. For a
contour Ω, let −Ω denote the contour given by the complex conjugate of Ω traversed in the
opposite direction and below the respective branch cuts. (Note that −Γ5 is still traversed
clockwise but below the branch cut.) We define the contour Γ1 by

Γ1 :=


∑8

j=2 Γj +
∑7

j=2(−Γj), under Case 1

Γ2 + Γ3 + Γ∗
4 + Γ8 + (−Γ∗

4) + (−Γ3) + (−Γ2), under Case 2∑4
j=2 Γj + Γ∗

5 +
∑4

j=2(−Γj), under Case 3.

In Case 3, if βe doesn’t exist, then there is no branch cut and Γ4, Γ4 and Γ∗
5 are excluded from

Γ1. In all three cases, the integrand in (7.14) is analytic in the region enclosed by Γ1 and the

segment joining 1
k

(
1 + 1

logX

)
− iT and 1

k

(
1 + 1

logX

)
+ iT . (Note that if cχ̂ = 1, the definitions

of Q(k; f1, · · · , fK) and Gχ,1, Gχ,2 in Lemma 7.1 give Gχ,2(1/k) = 0, canceling the simple pole
of F1(sk) at s = 1/k. In particular, this happens in Case 3.) So

(7.15)
∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 = − 1

2πi

∫
Γ1

Fχ(s)X
s

s
ds+O

(
X1/k logX

T

)
.

We now proceed to estimate the integrals occurring on the right hand side above. In the
following proposition, any result about an integral is valid whenever the corresponding contour
is a part of Γ1: so for instance, the assertion on Γ8 (resp. Γ∗

5) holds under Cases 1 or 2 (resp.
Case 3), those on Γ5 and Γ6 hold under Case 1, and the bound involving Γ4 holds under Cases
1 and 3. Let Ij (resp. Ij, I

∗
j ) denote the corresponding integral along Γj (resp. −Γj, Γ

∗
j).

Proposition 7.4. We have the following bounds:

(i) |I2|+ |I2|+ |I3|+ |I3| ≪ X1/k exp(−κ0
√
logX) for some constant κ0 := κ0(c1, k) > 0.

(ii) max{|I4 + I4|, |I6 + I6|} ≪ X1/k exp(−
√
logX) uniformly in δ, δ1 as above.

(iii) limδ1→0+ |I5| = limδ1→0+ |I5| = limδ1→0+ |I∗5 | = limδ→0+ |I8| = 0.

Proof. To show subpart (i), we use the fact that since βe > 1 − 5c1/24 logQ, any s lying on
Γ2, Γ3 or their conjugates satisfies the requirements of Proposition 7.2(iii). As such, (i) follows
immediately from Proposition 7.2(iii) and the fact that |s| ≫ |t|+ 1 for all s.



40 AKASH SINGHA ROY

For subpart (ii), we note that for all s ∈ Γ4, we have (s−1/k)−αk(Q)cχ̂ = (1/k−s)−αk(Q)cχ̂ e−iπαk(Q)cχ̂

and (s − βe/k)
αk(Q)cχ̂γ(ψe) = (βe/k − s)αk(Q)cχ̂γ(ψe) eiπαk(Q)cχ̂γ(ψe). (This is clear if the branch

cut is along σ ≤ 1/k, and also if the branch cut is along σ ≤ βe/k which is when (αk(Q), cχ̂) =

(1, 1).) Likewise, for all s ∈ Γ4, we have (s − 1/k)−αk(Q)cχ̂ = (1/k − s)−αk(Q)cχ̂ eiπαk(Q)cχ̂ and
(s−βe/k)

αk(Q)cχ̂γ(ψe) = (βe/k− s)αk(Q)cχ̂γ(ψe) e−iπαk(Q)cχ̂γ(ψe). Since e±iπαk(Q)cχ̂(γ(ψe)−1) ≪ 1, the

definitions of F̃χ(s) and H̃χ(s) show that

|I4 + I4| ≪

∣∣∣∣∣
∫ βe/k−δ1

σk(0)

H̃χ(s)Gχ,2(s)X
s

s

(
1

k
− s

)−αk(Q)cχ̂
(
βe
k

− s

)αk(Q)cχ̂γ(ψe)

ds

∣∣∣∣∣ .
But now by Lemma 7.1(iii) and Proposition 7.2(ii), we see that

|I4 + I4| ≪ Xβe/k(logX)αk(Q)ϵ1/4(1− βe)
−αk(Q)

∫ βe/k−δ1

σk(0)

(
βe
k

− s

)αk(Q)Re(cχ̂γ(ψe))

ds

≪ Xβe/k(logX)3αk(Q)ϵ1/10 ·
(
βe
k

− σk(0)

)1+αk(Q)Re(cχ̂γ(ψe))

≪ X1/k exp(−
√

logX).

Here we have recalled that βe ≤ 1− c(ϵ1)/Q
ϵ1/20K0 ≤ 1− c(ϵ1)/(logX)ϵ1/20 for some constant

c(ϵ1) > 0, and (as argued before Lemma 7.1) that Qe := f(ψe) has a prime factor ℓe > D + 2,
which upon factoring ψe =

∏
ℓ|Q ψe,ℓ with ψe,ℓ being a character mod ℓ, led to

(7.16)

αk(Q)|γ(ψe)| ≤ αk(Q)
∏
ℓ|Qe

∣∣∣∣∣
∑

v: vWk(v)∈Uℓ
ψe,ℓ(v)

αk(ℓ)(ℓ− 1)

∣∣∣∣∣ ≤ 1

ℓe − 1

∣∣∣∣∣ ∑
v mod ℓe

Wk(v)≡0 (mod ℓe)

ψe,ℓ(v)

∣∣∣∣∣ ≤ D

D + 1
.

This shows the desired bound on I4 in (ii), and the assertion for I6 is entirely analogous.

Coming to subpart (iii), we parametrize the points of Γ5 by s = βe/k+ δ1e
iθ where π ≥ θ ≥ 0.

Since M̃ := sup|s−βe
k |≤ 1

2(
βe
k
−σk(0)) |H̃χ(s)| is finite, we have for all sufficiently small δ1 > 0,

|I5| ≪ M̃

∫ π

0

Xβe/k+δ1

(
1− βe
k

− δ1

)−αk(Q)Re(cχ̂)

δ
1+αk(Q)Re(cχ̂γ(ψe))

1 dθ ≪ M̃Xβe/k+δ1δ
1/(D+1)
1(

1−βe
k

− δ1
)αk(Q)

,

where we have again seen that 1+αk(Q)Re(cχ̂γ(ψe)) ≥ 1/(D+1) by (7.16). The last expression
shows that limδ1→0+ |I5| = 0, and the assertions on |I5| and |I∗5 | are proved similarly. The same

argument also shows that |I8| ≪ M∗X1/k+δδ1−αk(Q)Re(cχ̂)
(
1−βe
k

− δ
)−αk(Q)

for all sufficiently

small δ > 0, where M∗ = sup|s− 1
k |≤ 1−β∗

k
|H̃χ(s)|. This yields limδ→0+ |I8| = 0, because

αk(Q)Re(cχ̂) < 1 whenever (αk(Q), cχ̂) ̸= (1, 1). □

Now in case 3, we let δ1 ↓ 0 in (7.15) and invoke the relevant assertions of Proposition 7.4
to obtain

∑
n≤X χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 ≪ X1/k exp(−κ1

√
logX) for some constant

κ1 > 0. Hence to complete the proof of Theorem 5.5, it suffices to assume that (αk(Q), cχ̂) ̸=
(1, 1). In case 1, we obtain, by letting δ ↓ 0 and δ1 ↓ 0 in (7.15),

(7.17)
∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 = − lim
δ→0+

I7 + I7
2πi

+O(X1/k exp(−κ1
√
logX)).
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By an argument analogous to that given for Proposition 7.4(ii), it is easy to see that the above
limit exists. Furthermore, writing (s − 1/k)−αk(Q)cχ̂ = (1/k − s)−αk(Q)cχ̂ e±iπαk(Q)cχ̂ as before,
we see that the limit in (7.17) is equal to

sin(παk(Q)cχ̂)

π

∫ 1/k

β∗/k

Hχ(s)Gχ,2(s)X
s

(
1

k
− s

)−αk(Q)cχ̂

ds,

We write the above integral asHχ(1/k)Gχ,2(1/k)I1−I2, where I1 :=
∫ 1/k

β∗/k
Xs(1/k−s)−αk(Q)cχ̂ ds.

Letting s = 1/k − u/ logX, and using β∗ = 2/3 + βe/3 ≤ 1− c(ϵ1)/3(logX)ϵ1/20 along with a
standard bound on the tail of the integral defining a Gamma function [45, Lemma 7], we get

I1 =
X1/k

(logX)1−αk(Q)cχ̂

{
Γ(1− αk(Q)cχ̂) +O(exp(−

√
logX))

}
.

Now using Proposition 7.2(iv) and making the same change of variable, we find that

I2 ≪ (logX)

(
1
20

+
αk(Q)

5

)
ϵ1

∫ 1/k

β∗/k

Xs

(
1

k
− s

)1−αk(Q)Re(cχ̂)

ds≪ X1/k

(logX)2−αk(Q)Re(cχ̂)−(1/20+αk(Q)/5)ϵ1

as Γ(2− αk(Q)Re(cχ̂)) ≪ 1. Collecting estimates, we obtain from (7.17),

(7.18)∑
n≤X

1(f(n),Q)=1

K∏
i=1

χ1(f1(n)) =
Hχ(1/k)Gχ,2 (1/k)

Γ(αk(Q)cχ̂)
· X1/k

(logX)1−αk(Q)cχ̂

(
1+O(exp(−

√
logX))

)
+O

(
X1/k

(logX)2−αk(Q)Re(cχ̂)−(1/20+αk(Q)/5)ϵ1

)
,

by the reflection formula for the Gamma function and as Γ(z) ≫ 1 for all z with |z| ≤ 2.

If cχ̂ ̸= 1, then Re(cχ̂) ≤ cos(2π/φ(Q0)) < 1− ϵ1. Lemma 7.1(iii) and Proposition 7.2(i) yield∑
n≤X

1(f(n),Q)=1

K∏
i=1

χ1(f1(n)) ≪
X1/k

(logX)1−αk(Q)(Re(cχ̂)+ϵ1/5)
≪ X1/k

(logX)1−αk(Q)(1−δ0)
,

with δ0 := δ0(λ) := min{3ϵ1/4, 1 − ϵ1/2}. On the other hand, if cχ̂ = 1, then since q ∈
Q(k; f1, · · · , fK), we must have Gχ,2(1/k) = 0 (as observed before (7.15)). Hence, (7.18) yields∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 ≪
X1/k

(logX)2−αk(Q)−(1/20+αk(Q)/5)ϵ1
≪ X1/k

(logX)1−αk(Q)(1−δ0)
,

completing the proof of Theorem 5.5 in case 1.

Finally in case 2, (7.15) and Proposition 7.4 lead to the following analogue of (7.17):

(7.19)
∑
n≤X

χ1(f1(n)) · · ·χK(fK(n))1(f(n),Q)=1 = − lim
δ→0+

I∗4 + I∗4
2πi

+O(X1/k exp(−κ0
√
logX)).

An argument entirely analogous to the one given above leads to the sharper variant of (7.18)

with the exp(−
√
logX) replaced by exp

(
− c1 logX

8kK0 log2X

)
, completing the proof of Theorem 5.5.
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This finally concludes the proof of Theorem 4.2. In order to establish Theorems 2.1 to 2.3,
we thus need to appropriately bound the contributions of inconvenient n’s considered in the
respective theorems. We take this up in the next several sections.

8. Equidistribution to restricted moduli: Proof of Theorem 2.1

By Theorem 4.2, it remains to show that

(8.1)
∑

n≤x inconvenient
(∀i) fi(n)≡ai (mod q)

1 = o

(
1

φ(q)K

∑
n≤x

(f(n),q)=1

1

)
as x→ ∞,

uniformly in coprime residues (ai)
K
i=1 to k-admissible moduli q ≤ (log x)K0 , under any one of

the conditions (i)-(iii) of Theorem 2.1.

To show this, we set z := x1/ log2 x and recall that, by (4.3), (3.3) and (3.1), the n’s that are
either z-smooth or divisible by the (k + 1)-th power of a prime exceeding y give negligible
contribution to the left hand side of (8.1) in comparison to the right hand side. The remaining
n can be written in the form mP k, where P := P (n) > z, PJk(m) ≤ y, m is not divisible by
the (k+1)-th power of a prime exceeding y, and gcd(m,P ) = 1, so that fi(n) = fi(m)Wi,k(P ).
Given m, the number of possible P is, by the Brun-Titchmarsh inequality,

≪
V ′′
1,q

φ(q)
· (x/m)1/k

log(z/q)
≪

V ′′
1,q

φ(q)
· x

1/k log2 x

m1/k log x
,

where V ′′
1,q := max

{
#V(k)

1,K

(
q; (wi)

K
i=1

)
: (wi)

K
i=1 ∈ UK

q

}
. Summing this over possible m, we get∑

n≤x inconvenient
P (n)>z; p>y =⇒ pk+1 ∤ n

(∀i) fi(n)≡ai (mod q)

1 ≪
V ′′
1,q

φ(q)
· x1/k

(log x)1−αkϵ/2
exp

(
O((log3 x)

2 + (log2(3q))
O(1))

)

via (4.5). By Proposition 3.1, the quantity on the right hand side above is negligible compared
to the right hand side of (8.1) whenever qK−1V ′′

1,q ≪ (log x)(1−2ϵ/3)αk . But this does hold under
any one of conditions (i)-(iii) in the statement of Theorem 2.1, because:

(i) V ′′
1,q ≪ 1 if at least of one of {Wi,k}1≤i≤K is linear.

(ii) V ′′
1,q ≪ D

ω(q)
min if q is squarefree, since #V(k)

1,K(ℓ; (wi)
K
i=1) ≤ Dmin for all ℓ≫ 1.

(iii) V ′′
1,q ≪ q1−1/Dmin by work of Konyagin [19, 20]

This establishes (8.1), completing the proof of Theorem 2.1. □

8.1. Optimality in the ranges of q in Theorem 2.1. In all our examples below, {Wi,k}Ki=1

⊂ Z[T ] will be nonconstant with
∏K

i=1Wi,k separable over Q. Then β(W1,k, . . . ,WK,k) = 1,
guaranteeing that any integer satisfies IFH(W1,k, . . . ,WK,k; 1). We claim that there exists

a constant C̃ := C̃(W1,k, . . . ,WK,k) such that for any multiplicative functions (f1, . . . , fK)

satisfying fi(p
k) = Wi,k(p) for all primes p and all i ∈ [K], any C̃-rough k-admissible integer

q lies in Q(k; f1, · · · , fK); in other words, (f1, . . . , fK) are jointly WUD modulo any fixed C̃-
rough k-admissible integer q. Indeed, viewing a character of UK

q as a tuple of characters mod
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q,10 the condition (2.1) becomes vacuously true whenever Tk(q) := {(W1,k(u), · · · ,WK,k(u)) ∈
UK
q : u ∈ Uq} generates the group UK

q . Now under the canonical isomorphism UK
q →

∏
ℓe∥q U

K
ℓe ,

the set Tk(q) maps to
∏

ℓe∥q Tk(ℓe). Thus by [31, Lemma 5.13], if Tk(q) does not generate UK
q ,

then there is some ℓe ∥ q and some tuple of characters (ψ1, · · · , ψK) ̸= (χ0,ℓ, . . . , χ0,ℓ) mod

ℓe for which
∏K

i=1 ψi(Wi,k(u)) is constant on the set Rk(ℓ
e). Our claim now follows from [29,

Lemma 5].

Fix any k ∈ N. Let C̃0 > max{C̃, 4KD} be any constant depending only on the polynomials
{Wi,k}1≤i≤K , which also exceeds the size of the leading coefficient and (nonzero) discriminant

of
∏K

i=1Wi,k. Then by Theorem N, f1, . . . , fK are jointly weakly equidistributed modulo any

(fixed) C̃0-rough k-admissible integer. Fix a prime ℓ0 > C̃0, and consider any nonconstant
polynomials {Wi,v} 1≤i≤K

1≤v≤k−1
⊂ Z[T ] all of whose coefficients are divisible by ℓ0, so that αv(ℓ0) = 0

for each v < k. Our moduli q will have P−(q) = ℓ0, so that αv(q) = 0 for all v < k.
In each example below, we will show that αk(q) ̸= 0, so that q is k-admissible and lies in

Q(k; f1, · · · , fK) by definition of C̃0. The constant K0 (in the assumption q ≤ (log x)K0) is
taken large enough in terms of {Wi,k}Ki=1.

Optimality under condition (i). We show that for any K ≥ 2, the range of q in Theorem
2.1(i) is optimal, – even if all of W1,k, . . . ,WK,k are assumed to be linear, for any choice of
(pairwise coprime) linear functions. Indeed, consider Wi,k(T ) := ciT + bi ∈ Z[T ] for nonzero
integers ci and integers bi satisfying bi/ci ̸= bj/cj for all i ̸= j. Then

∏K
i=1Wi,k is clearly

separable in Q[T ]. Choose a nonzero integer b such that
∏K

i=1(cib + bi) ̸= 0. Let C̃0 >
max{|b|, |cib + bi| : 1 ≤ i ≤ K} be any constant satisfying the aforementioned requirements,

so that any q with P−(q) = ℓ0 > C̃0 is coprime to b and to
∏K

i=1Wi,k(b) =
∏K

i=1(cib + bi).
Thus αk(q) ̸= 0 and q ∈ Q(k; f1, · · · , fK). Now any prime P ≤ x1/k satisfying P ≡ b
(mod q) also satisfies fi(P

k) = Wi,k(P ) ≡ cib+ bi (mod q) for all i ∈ [K]. The Siegel–Walfisz
Theorem thus shows that there are ≫ x1/k

/
φ(q) log x many n ≤ x satisfying fi(n) ≡ cib + bi

(mod q) for all i ∈ [K]. By Proposition 3.1, this last expression grows strictly faster than
φ(q)−K#{n ≤ x : (f(n), q) = 1} as soon as q ≥ (log x)(1+ϵ)αk/(K−1) for any fixed ϵ ∈ (0, 1),
showing that the range of q in Theorem 2.1 under condition (i) is essentially optimal. Note
that with Y ∈ [2(1 + ϵ) log2 x/(K − 1), (K0/2) log2 x], the squarefree integer q :=

∏
ℓ0≤ℓ≤Y ℓ

satisfies all desired conditions; in particular (log x)(1+ϵ)/(K−1) ≤ q ≤ (log x)K0 and P−(q) = ℓ0.

Optimality under condition (ii). To show that the range of squarefree q in Theorem
2.1(ii) is optimal, we define Wi,k(T ) :=

∏
1≤j≤d(T − 2j) + 2(2i − 1) ∈ Z[T ] for some fixed

d > 1. Eisenstein’s criterion at the prime 2 shows that each Wi,k is irreducible in Q[T ], and

the distinct Wi,k’s differ by a constant, making
∏K

i=1Wi,k separable over Q. Now 2 ∈ Uq,

and Wi,k(2) = 2(2i − 1) ≤ 2(2K − 1) < 4KD < C̃0 < P−(q) for each i ∈ [K]. Thus, q ∈
Q(k; f1, · · · , fK) and (2(2i−1))Ki=1 ∈ UK

q . Further, any prime P satisfying
∏

1≤j≤d(P −2j) ≡ 0

(mod q) also satisfies fi(P
k) = Wi,k(P ) ≡ 2(2i−1) (mod q) for each i. Since 2d = 2degWi,k <

4KD < P−(q), we see that 2, 4, . . . , 2d are all distinct coprime residues modulo each prime
dividing q, whereupon it follows that the congruence

∏
1≤j≤d(v− 2j) ≡ 0 (mod q) has exactly

10Here UK
q is the direct product of Uq taken K times.
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dω(q) distinct solutions v ∈ Uq for squarefree q. Hence, there are ≫ dω(q)

φ(q)
· x1/k
log x

many primes

P ≤ x1/k satisfying fi(P
k) ≡ 2(2i − 1) (mod q) for all i, so there are also at least as many

n ≤ x for which all fi(n) ≡ 2(2i − 1) (mod q). The last expression grows strictly faster than

φ(q)−K#{n ≤ x : (f(n), q) = 1} as soon as qK−1D
ω(q)
min = qK−1dω(q) > (log x)(1+ϵ)αk for any

fixed ϵ > 0, showing that the range of q in Theorem 2.1(ii) is essentially optimal.

Note that it is possible to construct squarefree q ≤ (log x)K0 satisfying the much stronger
requirement that dω(q) > (log x)(1+ϵ)αk (and P−(q) = ℓ0). Indeed, let q :=

∏
ℓ0≤ℓ≤Y ℓ for

some Y ≤ (K0/2) log2 x. Then ω(q) =
∑

ℓ0≤ℓ≤Y 1 ≥ Y/2 log Y , while by the Chinese Re-
mainder Theorem and the Prime Ideal Theorem, αk(q) ≤ κ′/ log Y for some constant κ′ :=
κ′(W1,k, . . . ,WK,k; ℓ0). So we need only choose Y ∈ (4κ′ log2 x/ log d, (K0/2) log2 x) to have
q ≤ (log x)K0 and dω(q) > (log x)(1+ϵ)αk .

For future reference, we observe that any n of the form P k with P a prime exceeding q satisfies
Pk(n) > q. Hence in the above setting, we have shown the stronger lower bound

(8.2)
∑

n≤x: Pk(n)>q
(∀i) fi(n)≡2(2i−1) (mod q)

1 ≥
∑

q<P≤x1/k∏
1≤j≤d(P−2j)≡0 (mod q)

1 ≫ dω(q)

φ(q)
· x

1/k

log x
.

Optimality under condition (iii). Fix d > 1 and define Wi,k(T ) := (T − 1)d + i ∈ Z[T ], so
that

∏K
i=1Wi,k(T + 1) =

∏K
i=1(T

d + i) is clearly separable in Q[T ], hence so is
∏K

i=1Wi,k(T ).
Let q := Qd for some Q ≤ (log x)K0/d satisfying P−(Q) = ℓ0. Then 1 ∈ Rk(q), showing that q ∈
Q(k; f1, · · · , fK). Moreover, i ∈ Uq for each i ∈ [K], and any prime P ≡ 1 (mod Q) satisfies
fi(P

k) = Wi,k(P ) = (P −1)d+ i ≡ i (mod q). Consequently, there are ≫ x1/k
/
q1/d log x many

n ≤ x satisfying fi(n) ≡ i (mod q) for all i, and this last expression grows strictly faster than
φ(q)−K#{n ≤ x : (f(n), q) = 1} as soon as qK−1/Dmin = qK−1/d ≥ (log x)(1+ϵ)αk for some fixed
ϵ ∈ (0, 1). This establishes that the range of q in condition (iii) of Theorem 2.1 is optimal, and
concrete examples of moduli q satisfying the conditions imposed so far, are those of the form
Qd, with Q lying in [(log x)(1+ϵ)(K−1/d)−1/d, (log x)K0/d] and having least prime factor ℓ0.

9. Restricted inputs to general moduli: Proof of Theorem 2.2

Fix T ∈ N>1. By Proposition 4.1 and the fact that PJk(n) ≤ PT (n), it is immediate that

(9.1)
∑

n≤x: PT (n)≤q
gcd(f(n),q)=1

1 = o

( ∑
n≤x

gcd(f(n),q)=1

1

)
.

In Theorems 2.2 and 2.3, we may assume q to be sufficiently large, for otherwise these results
follow directly from Theorem N and (9.1). The latter formula also show the equality of the
second and third expressions in (2.2), so it remains to show the first equality in either. Recall
that for this theorem, we have ϵ := 1 and y = exp(

√
log x) in the framework developed in

section 4. Now any convenient n has PJk(n) > y and hence is counted in the left hand side of
(2.2). By Theorem 4.2, it suffices to show that the contributions of the inconvenient n to the
left hand sides of (2.2) are negligible compared to φ(q)−K#{n ≤ x : (f(n), q) = 1}. In fact,
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by (4.3) and (3.3), it remains to show the bound (9.2)below to establish the theorem:∑∗

n: PR(n)>q
1 ≪ x1/k

φ(q)K(log x)1−2αk/3
.(9.2)

Here and in the rest of the manuscript, any sum of the form
∑∗

n denotes a sum over positive
integers n ≤ x that are not z-smooth, not divisible by the (k+1)-th power of a prime exceeding
y, have PJk(n) ≤ y and satisfy fi(n) ≡ ai (mod q) for all i ∈ [K]. Other conditions imposed
on this sum are additional to these.

Defining ω∥(n) := #{p > q : pk ∥ n} and ω∗(n) := #{p > q : pk+1 | n}, we first show the
following three bounds:
(9.3)∑∗

n: ω∥(n)≥KD+1
1,
∑∗

n: ω∥(n)=KD

ω∗(n)≥1

1,
∑

n≤x: (f(n),q)=1
ω∗(n)≥Kk, PJk(n)≤y, P (n)>z

p>y =⇒ pk+1 ∤ n

1 ≪ x1/k

φ(q)K(log x)1−2αk/3
.

Any n counted in the first sum is of the form m(PKD+1 · · ·P1)
k, where PJk(m) ≤ y, where

P1, . . . , PKD+1 are primes exceeding q satisfying P1 := P (n) > z and q < PKD+1 < · · · < P1,

and where fi(n) = fi(m)
∏KD+1

j=1 fi(P
k
j ) = fi(m)

∏KD+1
j=1 Wi,k(Pj). The conditions fi(n) ≡ ai

(mod q) can be rewritten as (P1, . . . , PKD+1) mod q ∈ V(k)
KD+1,K

(
q; (aifi(m)−1)Ki=1

)
. Given

m, (v1, . . . , vKD+1) ∈ V(k)
KD+1,K

(
q; (aifi(m)−1)Ki=1

)
, and P2, . . . , PKD+1, the number of P1 in (q,

x1/k
/
m1/kP2 · · ·PKD+1] satisfying P1 ≡ v1 (mod q) is≪ x1/k log2 x

/
m1/kP2 · · ·PKD+1φ(q) log x,

by Brun-Titchmarsh. We sum this over all possible P2, . . . , PKD+1, making use of the bound∑
q<p≤x

p≡v (mod q)
1/p ≪ log2 x

/
φ(q) uniformly in v ∈ Uq (this follows from Brun–Titchmarsh and

partial summation). We deduce that the number of possible (P1, . . . , PKD+1) satisfying Pj ≡ vj
(mod q) for each j ∈ [KD + 1] is no more than

(9.4)
∑

q<PKD+1<···<P2≤x
(∀j) Pj≡vj (mod q)

∑
z<P1≤x1/k

/
m1/kP2···PKD+1

P1≡v1 (mod q)

1 ≪ 1

φ(q)KD+1
· x

1/k(log2 x)
O(1)

m1/k log x
.

Define V ′
r,K := max

{
#V(k)

r,K

(
q; (wi)

K
i=1

)
: w1, . . . , wK ∈ Uq

}
. Summing (9.4) over all (v1, . . . ,

vKD+1) ∈ V(k)
KD+1,K

(
q; (aifi(m)−1)Ki=1

)
and then over all m via (4.5) shows that∑∗

n: ω∥(n)≥KD+1
1 ≪

V ′
KD+1,K

φ(q)KD+1
· x1/k

(log x)1−αk/2
· exp

(
O
(
(log3 x)

2 + (log2(3q))
O(1)
))
.(9.5)

Applying (4.9) with N := KD+1, we get V ′
KD+1,K/φ(q)

KD+1 ≪ φ(q)−K
∏

ℓ|q(1+O(ℓ
−1/D)) ≪

φ(q)−K exp
(
O((log q)1−1/D)

)
. This yields the first bound in (9.3).

Next, any n counted in the second sum in (9.3) can be written in the form mpc(PKD · · ·P1)
k

for some m, c and distinct primes p, P1, . . . , PKD exceeding q, which satisfy the conditions P1 =
P (n) > z, q < PKD < · · · < P1, PJk(m) ≤ y, c ≥ k + 1 and fi(n) = fi(m)fi(p

c)
∏KD

j=1Wi,k(Pj),

so that (P1, . . . , PKD) mod q ∈ V(k)
KD,K

(
q; (aifi(mp

c)−1)Ki=1

)
. Given m, p, c and (v1, . . . , vKD) ∈

V(k)
KD,K

(
q; (aifi(mp

c)−1)Ki=1

)
, the arguments leading to (9.4) show that the number of possible
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(P1, . . . , PKD) satisfying (Pj)
KD
i=1 ≡ (vj)

KD
i=1 (mod q) is≪ x1/k(log2 x)

O(1)
/
φ(q)KDm1/kpc/k log x.

Summing this successively over all (v1, . . . , vKD), c ≥ k + 1, p > q and all possible m, shows

that the second of the three sums in (9.3) is≪ V ′
KD,K

q1/kφ(q)KD · x1/k

(log x)1−2αk/3 . (Here we have noted that∑
p>q, c≥k+1 p

−c/k ≪
∑

p>q p
−1−1/k ≪ q−1/k.) By (4.10), we have V ′

KD,K

/
q1/kφ(q)KD ≪ 1/qK ,

proving the second inequality in (9.3).

Lastly, any n counted in the third sum in (9.3) still has P (n) > z and P (n)k ∥ q, and thus
can be written in the form mpc11 · · · pcKk

Kk P
k for some distinct primes p1, . . . , pKk, P exceeding

q and some integers m, c1, . . . , cKk, which satisfy P = P (n) > z, PJk(m) ≤ y, cj ≥ k + 1 for
all j ∈ [Kk], and gcd(f(m), q) = 1. Given m, p1, . . . , pKk, c1, . . . , cKk, the number of possible
P > z satisfying P k ≤ x/mpc11 · · · pcKk

Kk is ≪ x1/k
/
(mpc11 · · · pcKk

Kk )
1/k log z. Summing this over

all c1, . . . , cKk ≥ k + 1, and then over all p1, . . . , pKk,m, shows the third bound in (9.3).

In the rest of the argument, R as in the statement of the theorem is the least integer exceeding

max

{
k(KD + 1)− 1, k

(
1 + (k + 1)

(
K − 1

D

))}
=

{
k(KD + 1)− 1, if k < D

k (1 + (k + 1) (K − 1/D)) if k ≥ D.

Since q is sufficiently large, the q-rough part of any n satisfying gcd(f(n), q) = 1 is k-full (by
Lemma 3.3). As such, any n with ω∗(n) = 0 counted in (9.2) must have ω∥(n) ≥ ⌊R/k⌋ ≥
KD + 1, and hence is counted in the first sum in (9.3). Moreover, any n with ω∥(n) = KD
counted in (9.2) must also have ω∗(n) ≥ R − kω∥(n) ≥ k(KD + 1)− kKD ≥ 1, and hence is
counted in the second sum in (9.3). By (9.3), it thus remains to show that the contribution
of n having ω∥(n) ∈ [KD − 1] and ω∗(n) ∈ [Kk − 1] to the left hand side of (9.2) is absorbed
in the right hand side. This would follow once we show that for any fixed r ∈ [KD − 1] and
s ∈ [Kk− 1], the contribution Σr,s of all n with ω∥(n) = r and ω∗(n) = s to the left hand side
of (9.2) is absorbed in the right hand side.

Now any n counted in Σr,s is of the formmpc11 · · · pcss P k
1 · · ·P k

r for some distinct primes p1, . . . , ps,
P1, . . . , Pr and integers m, c1, . . . , cs, which satisfy the following conditions: (i) P (m) ≤ q;
(ii) P1 := P (n) > z; q < Pr < · · · < P1; (iii) p1, . . . , ps > q; (iv) c1, . . . , cs ≥ k + 1
and c1 + · · · + cs ≥ R − kr; (v) m, p1, . . . , ps, P1, . . . , Pr are all pairwise coprime, so that
fi(n) = fi(m)f(pc11 ) · · · f(pcss )

∏r
j=1Wi,k(Pj) for each i ∈ [K]. Here, property (i) holds because

the q-rough part of any n satisfying gcd(f(n), q) = 1 is k-full, whereas ω∥(n) = r, ω∗(n) = s .

With τi := min{ci, R− kr}, it is easy to see that the integers τ1, . . . , τs ∈ [k+1, R− kr] satisfy
τ1 ≤ c1, . . . , τs ≤ cs and τ1 + · · · + τs ≥ R − kr. (Here it is important that R ≥ k(KD + 1),
r ≤ KD − 1 and c1 + · · ·+ cs ≥ R− kr.) Turning this around, we find that

(9.6) Σr,s ≤
∑

τ1,...,τs∈[k+1,R−kr]
τ1+···+τs≥R−kr

Nr,s(τ1, . . . , τs),

where Nr,s(τ1, . . . , τs) denotes the contribution of all n counted in (9.2) which can be written
in the form mpc11 · · · pcss P k

1 · · ·P k
r for some distinct primes p1, . . . , ps, P1, · · · , Pr and integers

m, c1, . . . , cs satisfying the conditions (i)-(v) above, along with the condition c1 ≥ τ1, . . . , cs ≥
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τs. We will show that for each tuple (τ1, . . . , τs) occurring in (9.6), we have

(9.7) Nr,s(τ1, . . . , τs) ≪ x1/k(log2 x)
O(1)

qK log x
.

Consider an arbitrary such tuple (τ1, . . . , τs), and write n in the form mpc11 · · · pcss P k
1 · · ·P k

r as

above. The conditions fi(n) ≡ ai (mod q) lead to (P1, . . . , Pr) mod q ∈ V(k)
r,K

(
q; (aifi(mp

c1
1 · · ·

pcss )
−1)Ki=1

)
. Given m, p1, . . . , ps, c1, . . . , cs and (v1, . . . , vr) ∈ V(k)

r,K

(
q; (aifi(mp

c1
1 · · · pcss )−1)Ki=1

)
,

the arguments leading to (9.4) show that the number of possible P1, . . . , Pr satisfying Pj ≡
vj mod q for each j ∈ [r], is ≪ x1/k(log2 x)

O(1)
/
φ(q)rm1/kp

c1/k
1 · · · pcs/ks log x. With V ′

r,K =

max(wi)i∈UK
q
#V(k)

r,K

(
q; (wi)

K
i=1

)
as before, the bounds

∑
pi>q: ci≥τi p

−ci/k
i ≪ q−(τi/k−1) yield

(9.8) Nr,s(τ1, . . . , τs) ≪
1

q(τ1+···+τs)/k−s

V ′
r,K

φ(q)r
· x

1/k(log2 x)
O(1)

log x

∑
m≤x: P (m)≤q
gcd(f(m),q)=1

1

m1/k
.

Proceeding as in the argument for (4.5), we write any m in the above sum as BM where B is
k-free and M is k-full, so that B = O(1) and P (M) ≤ q. We find that
(9.9)∑
m≤x: P (m)≤q
gcd(f(m),q)=1

1

m1/k
≪

∑
M≤x: P (M)≤q
M is k-full

1

M1/k
≤
∏
p≤q

(
1 +

1

p
+O

(
1

p1+1/k

))
≪ exp

(∑
p≤q

1

p

)
≪ log q.

Inserting this into (9.8), we obtain

(9.10) Nr,s(τ1, . . . , τs) ≪
1

q(τ1+···+τs)/k−s

V ′
r,K

φ(q)r
· x

1/k(log2 x)
O(1)

log x
.

Now since 1 ≤ r ≤ KD − 1, an application of (4.10) with N := r now yields
(9.11)

Nr,s(τ1, . . . , τs) ≪
exp

(
O(ω(q))

)
q(τ1+···+τs)/k−s+r/D

·x
1/k(log2 x)

O(1)

log x
≪

exp
(
O(ω(q))

)
qmax{s/k,R/k−r−s}+r/D ·x

1/k(log2 x)
O(1)

log x
,

where in the last equality we have recalled that τ1, . . . , τs ≥ k + 1 and τ1 + · · ·+ τs ≥ R− kr.
We claim that max{s/k,R/k − r − s}+ r/D > K. This is tautological if s/k + r/D > K, so
suppose s/k + r/D ≤ K. Then r ≤ D(K − s/k) ≤ DK −D/k, and s ≤ k(K − r/D) so that
R/k−r−s+r/D ≥ R/k−Kk+((k+1)/D−1)r. If k < D, then (k+1)/D−1 ≤ 0, so for all 1 ≤
r ≤ DK−D/k, we have R/k−Kk+((k+1)/D−1)r ≥ R/k−Kk+((k+1)/D−1)(DK−D/k)
and this exceeds K since R ≥ k(KD+1). If on the other hand, we had k ≥ D, then k+1 > D
and the minimum value of R/k − Kk + ((k + 1)/D − 1)r is attained at r = 1, giving us
R/k − Kk + ((k + 1)/D − 1)r ≥ R/k − Kk + ((k + 1)/D − 1) which also exceeds K since
R > k

(
1 + (1 + k)(K − 1/D)

)
. This shows our claim, so that (9.11) leads to (9.7). Summing

(9.7) over the O(1) many possible tuples (τ1, . . . , τs) occurring in the right hand side of (9.6)
yields Σr,s ≪ x1/k(log2 x)

O(1)
/
qK log x, which (as argued before) establishes Theorem 2.2.



48 AKASH SINGHA ROY

10. Final preparatory step for Theorem 2.3: Counting points on varieties

To establish Theorem 2.3, we will need the following partial improvements of Corollary 5.4.
In this section, we again deviate from the general notation set up for Theorems 2.1 to 2.3, so
the notation set up in this section will be relevant in this section only.

Proposition 10.1. Let F ∈ Z[T ] be a fixed nonconstant polynomial which is not squarefull.

(a) Define V2,1(ℓ;w) := {(v1, v2) ∈ U2
ℓ : F (v1)F (v2) ≡ w (mod ℓ)}. Then #V2,1(ℓ;w) ≤

φ(ℓ)
(
1 +O

(
ℓ−1/2

))
, uniformly for primes ℓ and coprime residues w mod ℓ.

(b) Let G ∈ Z[T ] be any fixed polynomial such that {F,G} ⊂ Z[T ] are multiplicatively
independent. Let V3,2(ℓ;u,w) be the set of (v1, v2, v3) ∈ U3

ℓ satisfying the two con-
gruences F (v1)F (v2)F (v3) ≡ u (mod ℓ) and G(v1)G(v2)G(v3) ≡ w (mod ℓ). Then
#V3,2(ℓ;u,w) ≪F,G φ(ℓ), uniformly in primes ℓ and coprime residues u,w mod ℓ.

Our starting idea will be to look at V2,1(ℓ;w) and V3,2(ℓ;u,w) as subsets of the sets of Fℓ-
rational points of certain varieties over the algebraic closure Fℓ of Fℓ.

Proposition 10.2. Let V be a variety defined over Fℓ and V (Fℓ) := V ∩ Fℓ.

(a) If V is an absolutely irreducible affine plane curve, then #V (Fℓ) ≤ ℓ + O(
√
ℓ), where

the implied constant depends only on the degree of V .

(b) Let d be the positive integer such that V ⊂ (Fℓ)d. We have #V (Fℓ) ≪ ℓdimV , where
dimV is the dimension of V as a variety, and the implied constant depends at most on
d and on the number and degrees of the polynomials defining V .

Subpart(a) is a consequence of [24, Corollary 2b], while subpart (b) is a weaker version of [13,
Claim 7.2] but in fact goes back to work of Lang and Weil [22, Lemma 1]. To make use of the
aforementioned results, we will also be needing the following observations.

Lemma 10.3. Let F,G ∈ Z[T ] be fixed multiplicatively independent polynomials such that F
is not squarefull. There exist constants κ0(F ) and κ1(F,G) such that:

(a) For any N ≥ 2, ℓ > κ0(F ) and w ∈ F×
ℓ , the polynomial

∏N
i=1 F (Xi) − w is absolutely

irreducible over Fℓ, that is, it is irreducible in the ring Fℓ[X1, . . . , XN ].

(b) For any ℓ > κ1(F,G) and u,w ∈ F×
ℓ , the polynomial F (X)F (Y )F (Z)−u is irreducible

and doesn’t divide the polynomial G(X)G(Y )G(Z)− w in the ring Fℓ[X, Y, Z].

Proof. Write F := r
∏M

j=1G
bj
j for some r ∈ Z, bj ∈ N, and pairwise coprime irreducibles

Gj ∈ Z[T ], so that by the nonsquarefullness of F in Z[T ], we have bj = 1 for some j ∈ [M ].
By the observations at the start of the proof of Proposition 5.3, there exists a constant κ0(F )

such that for any prime ℓ > κ0(F ), ℓ doesn’t divide the leading coefficient of F and
∏M

j=1Gj

is separable in Fℓ[T ]. This forces
∏

θ∈Fℓ
F (θ)=0

(T − θ)2 ∤ F (T ) in Fℓ[T ].



EQUIDISTRIBUTION OF FAMILIES OF MULTIPLICATIVE FUNCTIONS I 49

Proof of (a). We will show that for any ℓ > κ0(F ) and U, V ∈ Fℓ[X1, . . . , XN ] satisfying

(10.1)
N∏
i=1

F (Xi)− w = U(X1, . . . , XN)V (X1, . . . , XN),

one of U or V must be constant. First note that for any root θ ∈ Fℓ of F , we have −w =
U(X1, . . . , XN−1, θ)V (X1, . . . , XN−1, θ), forcing U(X1, . . . , XN−1, θ) and V (X1, . . . , XN−1, θ) to
be constant in the ring Fℓ[X1, . . . , XN ]. Writing U(X1, . . . , XN), V (X1, . . . , XN) as∑

i1,...,iN−1≥0
i1≤R1,...,iN−1≤RN−1

ui1,...,iN−1
(XN) X

i1
1 · · ·X iN−1

N−1 ,
∑

j1,...,jN−1≥0
j1≤T1,...,jN−1≤TN−1

vj1,...,jN−1
(XN) X

j1
1 · · ·XjN−1

N−1

respectively (where ui1,...,iN−1
, vj1,...,jN−1

∈ Fℓ[XN ] and neither uR1,...,RN−1
nor vT1,...,TN−1

is iden-
tically zero), we thus find that ui1,...,iN−1

(θ) = vj1,...,jN−1
(θ) = 0 for any (i1, . . . , iN−1) ̸=

(0, . . . , 0), (j1, . . . , jN−1) ̸= (0, . . . , 0), and any θ as above. Thus, if the tuples (R1, . . . , RN−1)
and (T1, . . . , TN−1) are both nonzero, then

∏
θ∈Fℓ
F (θ)=0

(XN − θ) divides uR1,...,RN−1
(XN) and

vT1,...,TN−1
(XN) in Fℓ[XN ]. But then, if α ∈ Z is the leading coefficient of F , then comparing the

monomials (in X1, . . . , XN−1) with maximal total degree in (10.1), we find that αN−1F (XN) =
uR1,...,RN−1

(XN) vT1,...,TN−1
(XN) ≡ 0 (mod

∏
θ∈Fℓ
F (θ)=0

(XN−θ)2), which is impossible by the obser-

vations in the first paragraph of the proof. This forces one of (R1, . . . , RN−1) or (T1, . . . , TN−1)
to be (0, . . . , 0), say the latter. Then V (X1, . . . , XN) = v0,...,0(XN) and since N ≥ 2, plugging

X1 := θ for some root θ ∈ Fℓ of F into (10.1) yields −w = U(θ,X2, . . . , XN)v0,...,0(XN), forcing
V to be identically constant.

Proof of (b). We claim that for all primes ℓ ≫F,G 1, if the rational function F aGb is constant

in the ring Fℓ(T ) for some integers a, b, then a ≡ b ≡ 0 (mod ℓ).11 The argument for this is a

simple variant of that given for the inequality “ordℓ(F̃ ) ≤ 1ℓ≤C1C1” in the proof of Proposition
5.3(b), so we only sketch the outline. Since {F,G} ⊂ Z[T ] are multiplicatively independent,
the polynomials {F ′G,FG′} ⊂ Z[T ] are Q-linearly independent, hence so are the columns of
the matrix M1 listing the coefficients of F ′G and FG′ in two columns. Hence we can find
invertible matrices P1 and Q1 (where Q1 is a 2 × 2 matrix) such that P1M1Q1 = diag(β1, β2)
for some β1, β2 ∈ Z \ {0} satisfying β1 | β2. Let ℓ > |β2| be any prime not dividing the leading
coefficients of F , G, F ′G or FG′. If F aGb is identically constant in Fℓ[T ], then aF ′G+bFG′ ≡ 0
in Fℓ[T ], so M1(a b)

⊤ ≡ 0 (mod ℓ). Hereafter, familiar calculations yield (a b)⊤ ≡ 0 (mod ℓ).

Collecting our observations, we have shown that there exists a constant κ1(F,G) such that for
all primes ℓ > κ1(F,G), the following three properties hold:

(i) ℓ > κ0(F ), so that
∏

θ∈Fℓ
F (θ)=0

(T − θ)2 ∤ F (T ) in Fℓ[T ];

(ii) ℓ doesn’t divide the leading coefficient of F or G; and,

(iii) For any a, b ∈ Z for which F aGb is identically constant in Fℓ(T ), we have ℓ | a and ℓ | b.

11It is not difficult to see that this also forces a = b = 0, but we won’t need that.
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We will now show that any such constant κ1(F,G) satisfies the property in subpart (b) of
the lemma. By subpart (a), F (X)F (Y )F (Z) − u is already irreducible in Fℓ[X, Y, Z] for any
u ∈ F×

ℓ . Assume by way of contradiction that for some ℓ > κ1(F,G) and u,w ∈ F×
ℓ , we have

(10.2) G(X)G(Y )G(Z)−w = H0(X, Y, Z) (F (X)F (Y )F (Z)−u) for some H0 ∈ Fℓ[X, Y, Z].
WriteH0(X, Y, Z) =:

∑
0≤i1≤r1
0≤i2≤r2

hi1,i2(X)Y i1Zi2 for some hi1,i2 ∈ Fℓ[X] with hr1,r2 not identically

zero. If (r1, r2) = (0, 0), then substituting a root of F and G in place of Y and Z respectively,
we see that H0 must be a constant λ0 ∈ Fℓ \ {0} satisfying w = λ0u. Thus G(X)G(Y )G(Z) =
λ0F (X)F (Y )F (Z). Now substituting some η ∈ Fℓ which is not a root of FG in place of both Y
and Z leads to F (X)G(X)−1 = λ−1

0 F (η)−2G(η)2, a nonzero constant. But since (1,−1) ̸≡ (0, 0)
(mod ℓ), this violates condition (iii) in the definition of κ1(F,G). Hence (r1, r2) ̸= (0, 0).

Let α, β ∈ Z denote the leading coefficients of F and G respectively. Comparing the mono-
mials in Y and Z of maximal total degree in (10.2) yields β2G(X) = α2F (X)hr1,r2(X) in

Fℓ[X], so that (since either side of this identity is nonzero), we get F | G in Fℓ[X]. Write
G = FmH for some m ≥ 1 and H ∈ Fℓ[X] such that F ∤ H in Fℓ[X]. An easy finite in-
duction shows that with Gt(X, Y, Z) := F (X)m−tF (Y )m−tF (Z)m−tH(X)H(Y )H(Z) − u−tw

and F̂ (X, Y, Z) := F (X)F (Y )F (Z) − u, we have F̂ | Gt for each t ∈ {0, 1, . . . ,m}. In-

deed, the case t = 0 is just (10.2), and if F̂ | Gt for some t ≤ m − 1, then writing

Gt = QtF̂ shows that F (X)F (Y )F (Z) | (Qt(X, Y, Z) − u−(t+1)w). With Qt+1 defined by

Qt(X, Y, Z)− u−(t+1)w = F (X)F (Y )F (Z)Qt+1(X, Y, Z), we obtain Gt+1 = Qt+1F̂ completing
the induction.

Applying this last observation with t := m shows that F̂ (X, Y, Z) divides H(X)H(Y )H(Z)−
u−mw in Fℓ[X, Y, Z]. We claim that this forces H to be constant. Indeed if not, then let-
ting γ ∈ Fℓ \ {0} be the leading coefficient of H, 12 writing H(X)H(Y )H(Z) − u−mw =
(F (X)F (Y )F (Z)−u)

∑
0≤i1≤b1
0≤i2≤b2

gi1,i2(X)Y i1Zi2 for some gi1,i2 ∈ Fℓ[X] with gb1,b2 ̸= 0, and com-

paring the monomials in Y and Z of maximal degree, we obtain γ2H(X) = α2F (X)gb1,b2(X).
This leads to F | H, contrary to hypothesis. Hence H must be constant, so the identity
F−mG = H in Fℓ(X) violates condition (iii) in the definition of κ1(F,G), as (−m, 1) ̸≡ (0, 0)

(mod ℓ). This shows that F̂ cannot divide G(X)G(Y )G(Z)− w, completing the proof. □

Given a commutative ring R and an R-module M , we say that x ∈ R is an M -regular element
if x is not a zero-divisor on M , that is, if xz = 0 for some z ∈ M implies z = 0. A sequence
x1, . . . , xn of elements of R is said to be M -regular if x1 is an M -regular element, each xi is
an M/(x1, . . . , xi−1)M -regular element, and M/(x1, . . . , xn)M ̸= 0. It is well-known (see [5,
Proposition 1.2.14]) that for any proper ideal I in a Noetherian ring R, the height of I is at
least the length of the longest R-regular sequence contained in I.

Proof of Proposition 10.1. With κ0(F ) and κ1(F,G) as in Lemma 10.3, the affine plane curve

{(X, Y ) ∈ F2

ℓ : F (X)F (Y ) − w = 0} is absolutely irreducible for any ℓ > κ0(F ), so that
Proposition 10.2(a) yields Proposition 10.1(a). For (b), it suffices to show that for any prime

ℓ > κ1(F,G), the variety Vℓ ⊂ F3

ℓ defined by the polynomials F̂ (X, Y, Z) := F (X)F (Y )F (Z)−u
12Here γ ̸= 0 in Fℓ because ℓ doesn’t divide the leading coefficient of G = FmH.
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and Ĝ(X, Y, Z) := G(X)G(Y )G(Z) − w has ≪F,G ℓ many Fℓ-rational points. Consider the

ideal I(Vℓ) of the ring R := Fℓ[X, Y, Z] consisting of all polynomials vanishing at all the points

of Vℓ, so that (F̂ , Ĝ) ⊂ I(Vℓ). If I(Vℓ) = R, then Vℓ = ∅, so suppose I(Vℓ) ⊊ R. Lemma

10.3(b) shows that the sequence Ĝ, F̂ ∈ I(Vℓ) is R-regular, so by [5, Proposition 1.2.14], I(Vℓ)
has height at least 2. By [4, Chapter 11, Exercise 7], the Krull-dimension of R is 3, whence
that of R/I(Vℓ) is at most 3− 2 = 1 (by, say, [25, p. 31]). Thus dim(Vℓ) ≤ 1, and Proposition
10.2 completes the proof. □

11. Restricted inputs to squarefree moduli: Proof of Theorem 2.3

Returning to the notation set up in the introduction, we start with the same initial reductions
as in section 9. As such, in order to establish the theorem, it suffices to show that

∑∗

n: PR(n)>q
1 ≪ x1/k

φ(q)K(log x)1−2αk/3
,(11.1)

with the respective values of R defined in the statement. Here we again have ϵ = 1 and
y = exp(

√
log x) in the framework developed in section 4. We retain the notation ω∥(n) =

#{p > q : pk ∥ n} and ω∗(n) = #{p > q : pk+1 | n} from section 9.

The case K = 1, W1,k not squarefull. In this case, (11.1) would follow once we show that

(11.2)
∑∗

n: Pk+1(n)>q
1 ≪ x1/k

φ(q)(log x)1−2αk/3
,

Indeed, any n counted in (11.2) which is divisible by the (k+1)-th power of a prime exceeding
q can be written in the form mpcP k for some positive integers m, c and primes p, P , satisfying
P = P (n) > z, q < p < P , c ≥ k + 1, PJk(m) ≤ y and f(n) = f(m)f(pc)Wk(P ). Recalling
that #{u ∈ Uq : Wk(u) ≡ b (mod q)} ≪ Dω(q) uniformly in b ∈ Z, the argument given for

the second bound in (9.3) shows that the contribution of such n is ≪ Dω(q)

q1/kφ(q)
· x1/k

(log x)1−2αk/3 ≪
x1/k

φ(q)(log x)1−2αk/3 . On the other hand, for any n counted in (11.2) which is not divisible by

the (k + 1)-th power of any prime exceeding q, the condition Pk+1(n) > q forces ω∥(n) ≥ 2
(again since q is sufficiently large and the q-rough part of n is k-full). Thus n = m(P2P1)

k,
for some m and primes P1, P2 satisfying P1 := P (n) > z, q < P2 < P1, PJk(m) ≤ y and
f(n) = f(m)Wk(P1)Wk(P2). The arguments before (9.5) show that the contribution of such n

is ≪ V ′
2,1

φ(q)2
· x1/k

(log x)1−αk/2 exp((log3 x)
O(1)), which is ≪ x1/k

φ(q)(log x)1−2αk/3 by Proposition 10.1(a).

The remaining cases. To complete the proof of Theorem 2.3, it thus remains to show that
we may take:
(i) R = k(Kk +K − k) + 1 if K, k ≥ 2 and at least one of {Wi,k}1≤i≤K is not squarefull.
(ii) R = k(Kk +K − k + 1) + 1, in general.
We shall call (i) as “Subcase 1” and (ii) as “Subcase 2”, and we shall denote R = k(Kk+K−
k + 1) + 1 to mean the respective value of R in the respective subcase.
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We have the following analogues of the first two bounds in (9.3), which can be shown by
replicating arguments and replacing the use of Proposition 4.4 by Corollary 5.4.

(11.3)
∑∗

n: ω∥(n)≥2K+1
1,
∑∗

n: ω∥(n)=2K

ω∗(n)≥1

1 ≪ x1/k

φ(q)K(log x)1−2αk/3
,

If ω∗(n) = 0, then kω∥(n) ≥ R ≥ k(Kk+K−k+1)+1, so that ω∥(n) ≥ Kk+K−k+1+1 ≥
2K + 1; hence, any n with ω∗(n) = 0 counted in (11.1) is automatically counted in the first
sum in (11.3). Likewise, the condition ω∥(n) = 2K forces

∑
p>q: pk+1|n vp(n) ≥ R − kω∥(n) ≥

k((K−1)(k−1)−1+1)+1 ≥ 1, so that ω∗(n) ≥ 1; as such, any n with ω∥(n) = 2K contributing
to (11.1) is counted in the second sum in (11.3). Furthermore, by the third bound in (9.3), the
contribution of all n having ω∗(n) ≥ Kk to the left hand side of (11.1) is absorbed in the right
hand side. It thus suffices to show that for any r ∈ [2K−1] and s ∈ [Kk−1], the contribution
Σr,s of all n with ω∥(n) = r and ω∗(n) = s to the left hand side of (11.1) is absorbed in the
right hand side.

Recall that any n counted in Σr,s is of the form mpc11 · · · pcss P k
1 · · ·P k

r for some distinct primes
p1, . . . , ps, P1, . . . , Pr and integers m, c1, . . . , cs, which satisfy the conditions (i)–(v) in the proof
of Theorem 2.2, but with the current values of R. Once again, the integers τ1, . . . , τs defined
by τj := min{cj, R− kr} satisfy τj ∈ [k+ 1, R− kr], τj ≤ cj and τ1 + · · ·+ τs ≥ R− kr. (Here
R− kr ≥ k + 1 follows from r ≤ 2K − 1 and R = k(Kk +K − k + 1) + 1.) Thus,

(11.4) Σr,s ≤
∑

τ1,...,τs∈[k+1,R−kr]
τ1+···+τs≥R−kr

Nr,s(τ1, . . . , τs),

where Nr,s(τ1, . . . , τs) denotes the contribution of all n counted in the left hand side of (11.1)
which can be written in the form mpc11 · · · pcss P k

1 · · ·P k
r for some distinct primes p1, . . . , ps, P1,

· · · , Pr and integers m, c1, . . . , cs satisfying c1 ≥ τ1, . . . , cs ≥ τs and the conditions (i)–(v) in
the proof of Theorem 2.2 (but with the current values of R). We will show that for each tuple
(τ1, . . . , τs) occurring in (11.4), we have

(11.5) Nr,s(τ1, . . . , τs) ≪ x1/k(log2 x)
O(1)

qK log x
exp

(
O(
√
log q)

)
.

Now the bound (9.10) continues to hold, so we have

(11.6) Nr,s(τ1, . . . , τs) ≪
1

q(τ1+···+τs)/k−s

V ′
r,K

φ(q)r
· x

1/k(log2 x)
O(1)

log x

with the current values of r, s, τ1, . . . , τs and with V ′
r,K defined as before. By (5.22),

Nr,s(τ1, . . . , τs) ≪
exp

(
O(ω(q))

)
q(τ1+···+τs)/k−s+r/2

·x
1/k(log2 x)

O(1)

log x
≪

exp
(
O(ω(q))

)
qmax{s/k+r/2, R/k−r/2−s} ·

x1/k(log2 x)
O(1)

log x
.

Now max{s/k + r/2, R/k − r/2− s} > K whenever one of the following holds:
(a) In Subcase 1, we have either k ≥ 3, r ≥ 3, or k = 2, r ≥ 4.
(b) In Subcase 2, we have r ≥ 2.
Indeed, if s/k+r/2 ≤ K, then s ≤ k(K−r/2), so that R/k−r/2−s ≥ K+(k−1)(r/2−1)−
1+1+1/k. This last quantity strictly exceeds K precisely under (a) or (b) above, establishing
(11.5) under one of these two conditions. It thus only remains to tackle:
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(i) the possibility that r = 1 in both Subcases 1 and 2, and
(ii) the possibilities r = 2 and k = 2, r = 3 in Subcase 1.

The possibility r = 1 is easily handled (in both subcases) by inserting into (11.6) the triv-

ial bound V ′
r,K = V ′

1,K ≪ D
ω(q)
min . Now assume we are in Subcase 1 and either r = 2 or

k = 2, r = 3. Suppose wlog that W1,k is not squarefull. If r = 2, then Proposition

10.1(a) yields #V(k)
2,K(q; (wi)

K
i=1)/φ(q)

2 ≤ #V2,1(q;w1)/φ(q)
2 ≪ φ(q)−1 exp(O(

√
log q)), uni-

formly for (wi)
K
i=1 ∈ UK

q . Inserting this bound into (11.6), we deduce that N2,s(τ1, . . . , τs) ≪
q−max{s/k+1,R/k−1−s} · x

1/k(log2 x)
O(1)

log x
exp

(
O(

√
log q)

)
. Since max{s/k+1, R/k− 1− s} ≥ K, this

shows (11.5) in Subcase 1 when r = 2.

For k = 2, r = 3, the multiplicative independence of {W1,k,W2,k} allows us to use Propo-

sition 10.1(b) to get #V(k)
3,K(q; (wi)

K
i=1)
/
φ(q)3 ≪ exp

(
O(ω(q))

)/
φ(q)2 uniformly for (wi)

K
i=1.

By (11.6), N3,s(τ1, . . . , τs) ≪ q−max{s/2+2, R/2−1−s} · x
1/k(log2 x)

O(1)

log x
exp

(
O(ω(q))

)
, and it is easily

checked that max{s/2+2, R/2−1−s} > K. This shows (11.5) in Subcase 1 when k = 2, r = 3,
completing the proof of Theorem 2.3.

11.1. Optimality in the conditions of Theorem 2.3. We will now show that the first
two values of R given in Theorem 2.3 are optimal. We retain the setting in subsection § 8.1
we had used to show optimality in Theorem 2.1(ii). To recall: fix an arbitrary k ∈ N and

d > 1, and define Wi,k(T ) :=
∏d

j=1(T − 2j) + 2(2i − 1), so that
∏K

i=1Wi,k is separable (over

Q). Let C̃0 > 4KD be any constant (depending only on {Wi,k}1≤i≤K) exceeding the size of the

(nonzero) discriminant of
∏K

i=1Wi,k, and such that any C̃0-rough k-admissible integer lies in
Q(k; f1, · · · , fK). Fix a prime ℓ0 > C0 and nonconstant polynomials {Wi,v}1≤i≤K

1≤v<k
⊂ Z[T ] with

all coefficients divisible by ℓ0. Let q ≤ (log x)K0 be any squarefree integer having P−(q) = ℓ0,
so that as before q ∈ Q(k; f1, · · · , fK). Recall also that (2(2i− 1))Ki=1 ∈ UK

q , that any prime P

satisfying
∏d

j=1(P − 2j) ≡ 0 (mod q) also satisfies fi(P
k) ≡ 2(2i − 1) (mod q), and that the

congruence
∏d

j=1(v − 2j) ≡ 0 (mod q) has exactly dω(q) distinct solutions v ∈ Uq.

The first value R = 2 in Theorem 2.3 is optimal since the condition P2(n) > q cannot be
replaced by the condition P (n) > q, as shown in (8.2). We now show that the condition
“R = k(Kk + K − k) + 1” in Theorem 2.3 cannot be weakened to “R = k(Kk + K − k)”
for any K, k. To this end, let f1, . . . , fK : N → Z be any multiplicative functions such that
fi(p

v) := Wi,v(p) and fi(p
k+1) := 1 for all primes p, all i ∈ [K] and v ∈ [k]. Consider n of

the form (p1 · · · pk(K−1))
k+1P k ≤ x where P, p1, . . . , pk(K−1) are primes satisfying the conditions

P := P (n) > x1/3k, q < pk(K−1) < · · · < p1 < x1/4Kk
2
, and

∏
1≤j≤d(P − 2j) ≡ 0 (mod q).

Then Pk(Kk+K−k)(n) = pk(K−1) > q and fi(n) = fi(P
k)
∏k(K−1)

j=1 fi(p
k+1
j ) ≡ 2(2i − 1) (mod q)

for each i ∈ [K]. Given p1, . . . , pk(K−1), the number of primes P satisfying x1/3k < P ≤
x1/k

/
(p1 · · · pk(K−1))

1+1/k is ≫ dω(q)x1/k
/
φ(q)(p1 · · · pk(K−1))

1+1/k log x by Siegel–Walfisz; here

we have noted that (p1 · · · pk(K−1))
1+1/k ≤ x(K−1)(k+1)/4Kk2 ≤ x1/2k. Dividing by k! allows us
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to replace the condition pk(K−1) < · · · < p1 by a distinctness condition, giving us∑
n≤x:Pk(Kk+K−k)(n)>q

(∀i)fi(n)≡2(2i−1) (mod q)

1 ≫ dω(q)x1/k

φ(q) log x
(T1 − T2) ,(11.7)

where T1 denotes the sum ignoring the distinctness condition on the p1, . . . , pk(K−1), and
T2 denotes the sum over all the tuples (p1, . . . , pk(K−1)) for which pi = pj for some i ̸=
j ∈ [k(K − 1)]. Now T1 =

∏
1≤j≤k(K−1)

(∑
q<pj≤x1/4Kk2 p

−(1+1/k)
j

)
≫ 1/qK−1(log q)k(K−1)

while T2 ≪
(∑

p>q p
−(2+2/k)

) (∑
p>q p

−(1+1/k)
)k(K−1)−2

≪ 1/qK . Consequently, the expres-

sion on the right hand side of (11.7) is ≫ dω(q)x1/k
/
φ(q)K(log2 x)

k(K−1)+1 log x, which by

Proposition 3.1, grows strictly faster than φ(q)−K#{n ≤ x : gcd(f(n), q) = 1} as soon as
dω(q) > (log x)(1+ϵ)αk . We have already constructed such q in subsection § 8.1. Hence, the
condition Pk(Kk+K−k)+1(n) > q in Theorem 2.3 is optimal for any values of K and k.

As a remark, note that this example also shows that if k = 1, then for any K, the condition
“P2K+1(n) > q” coming from the third value of R in Theorem 2.3 is “almost optimal” in the
sense that it cannot be replaced by the condition “P2K−1(n) > q”.

12. Concluding Remarks

It is interesting to note that despite the extensive amount of ‘multiplicative machinery’ known
in analytic number theory, there does not seem to be any estimate in the literature, a direct
application of which can replace our arguments in section 7. For instance, Halász’s Theorem
only yields an upper bound on the character sums that is not precise enough, while a direct
application of the (known forms of) the Landau-Selberg-Delange method, – one of the most
precise estimates on the mean values of multiplicative functions known in literature, – seems
to give an extremely small range of uniformity in q.

Theorem 2.3 suggests a few directions of improvement. First, we are still “one step away” from
optimality in the K ≥ 2, k = 1 case: we proved that “2K + 1” is sufficient while “2K − 1” is
not, so the question is whether the optimal value is “2K” or “2K+1”. If it is the former, then
we will need a sharper bound on V ′

2K,K than what comes from our methods in section 11. One
can also ask whether it is possible to weaken the nonsquarefullness conditions in the theorem.
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