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Abstract. Let g1, . . . , gM be additive functions for which there exist nonconstant polynomi-
als G1, . . . , GM satisfying gi(p) = Gi(p) for all primes p and all i ∈ {1, . . . ,M}. Under fairly
general and nearly optimal hypotheses, we show that the functions g1, . . . , gM are jointly
equidistributed among the residue classes to moduli q varying uniformly up to a fixed but
arbitrary power of log x. Thus, we obtain analogues of the Siegel-Walfisz Theorem for primes
in arithmetic progressions, but with primes replaced by values of such additive functions.
Our results partially extend work of Delange from fixed moduli to varying moduli, and also
generalize recent work done for a single additive function.

1. Introduction

We say that an integer-valued arithmetic function g is uniformly distributed (or equidistributed)
modulo q if

(1.1) #{n ≤ x : g(n) ≡ b (mod q)} ∼ x

q
as x → ∞,

for each residue class b mod q. As a nontrivial example, it is a result due to Pillai [15] that
the function Ω(n) :=

∑
pk∥n k counting the prime factors of n with multiplicity is uniformly

distributed modulo any positive integer q. For general additive functions, a satisfactory char-
acterization was obtained by Delange [5] in 1969 for when an additive function g is uniformly
distributed to a fixed integer modulus q: his criterion involved the sums

∑
p: d∤f(p) 1/p for di-

visors d > 1 of q (we state the result precisely in the next section). This result shows, for
instance, that the function A(n) :=

∑
pk∥n kp (the sum of the prime divisors of n counted with

multiplicity) is equidistributed among the residue classes of any fixed integer modulus.

We say that a family g1, . . . , gM of integer-valued arithmetic functions is jointly equidistributed
modulo q if

#{n ≤ x : ∀i ∈ [M ], gi(n) ≡ bi (mod q)} ∼ x

qM
as x → ∞,

for all residues b1, . . . , bM mod q. (Here [M ] denotes the set {1, · · · ,M}.) One can similarly
ask whether it is possible to characterize families of additive functions g1, . . . , gM that are
jointly equidistributed to a fixed integer modulus q. Such a characterization was achieved
by Delange in [6] where he showed that the joint equidistribution of g1, . . . , gM modulo q is
equivalent to the equidistribution of certain integral linear combinations of g1, . . . , gM mod q;
see Proposition 2.2 for the precise statement.
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In all of the aforementioned results, the modulus q is assumed fixed. A natural question is
what happens when the modulus q is allowed to vary; in particular, whether equidistribution
continues to hold as q varies uniformly in a suitable range depending on the stopping point of
inputs (what we have been calling “x”). A reasonable goal in such an investigation would be to
seek analogues of the Siegel–Walfisz Theorem for primes in arithmetic progressions, according
to which the primes up to x are asymptotically equidistributed among the coprime residue
classes modulo q, uniformly for q varying up to any fixed power of log x. In other words, it
is reasonable to look for a version of the Siegel–Walfisz theorem, but with primes replaced by
values of additive functions.

In order to make things precise, we will say that given K ≥ 1, an integer-valued arithmetic
function g is equidistributed mod q uniformly for q ≤ (log x)K if the relation (1.1) holds uniformly
in moduli q ≤ (log x)K and in residue classes b mod q. Explicitly, this means that for any
ϵ > 0, there exists X(ϵ) > 0 such that the ratio of the left hand side of (1.1) to the right hand
side lies in (1 − ϵ, 1 + ϵ) for all x > X(ϵ), all q ≤ (log x)K and all residue classes b mod q.
This definition extends naturally to families of arithmetic functions, and we analogously define
what it means for a given family g1, . . . , gM of arithmetic functions to be jointly equidistributed
mod q, uniformly for q ≤ (log x)K .

Our aim in this paper is to study this phenomenon of joint equidistribution (to uniformly
varying moduli) for a large class of additive functions, namely those which can be defined
by the values of a polynomial at the primes. We say that an additive function g : N → Z is
polynomially-defined if there exists a nonconstant polynomial G ∈ Z[T ] satisfying g(p) = G(p)
for all primes p; we will then say that g is defined by (the polynomial) G. For example, both
the additive functions β(n) :=

∑
p|n p and A(n) =

∑
pk∥n kp are defined by the polynomial

G(T ) = T .

The equidistribution of a single polynomially-defined additive function with uniformity in
modulus seems to have been first studied in [16]. In that paper, Halász’s mean value theorem
is used to show that for any fixed δ > 0, the function A(n) is equidistributed mod q uniformly

for q ≤ (log x)
1
2
−δ. In [18], this has been improved to q ≤ (log x)K for the function A(n),

the full range permitted by the Siegel–Walfisz theorem. The method relies on exploiting an
ergodicity (or mixing) phenomenon in the multiplicative group mod q, and was primarily used
in [18] to study the distribution of polynomially defined multiplicative functions among the
coprime residue classes to moduli q varying up to any fixed power of log x. Recent work
of Akande [1] investigates the distribution of a single general polynomially-defined additive
function (see the paragraph following the statement of Theorem 1.1). To do this, he suitably
modifies the method in [18] by means of certain exponential sum estimates.

In the first main result of this paper, we shall generalize the results in [1] to families g1, . . . , gM
of additive functions defined by nonconstant polynomials G1, . . . , GM ∈ Z[T ] respectively, thus
extending Delange’s work [6] to uniformly varying moduli, for families of polynomially-defined
additive functions. To this end, let Q(g1,...,gM ) denote the set of moduli q such that g1, . . . , gM
are jointly equidistributed mod q. Under general conditions, we will show that g1, . . . , gM
are also jointly equidistributed mod q uniformly for q ≤ (log x)K lying in Q(g1,...,gM ). For
technical reasons to be elaborated on later (see Theorem 1.4), we will assume in our main
results (Theorems 1.1, 1.2 and 1.3) that the derivatives of Gi are linearly independent over
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Q. This amounts to assuming that no nontrivial Z-linear combination of the Gi reduces to a
constant in Z[T ], or in other words, that the polynomials {Gi(T )−Gi(0) : 1 ≤ i ≤ M} ⊂ Q[T ]
are Q-linearly independent. (For M = 1, this simply amounts to G1 being nonconstant.) In
particular, this hypothesis forces the maximum of the degrees of the Gi to be no less than M .

Our first main result shows that g1, . . . , gM are jointly equidistributed to moduli q lying in
Q(g1,...,gM ) varying uniformly up to a small power of log x. In what follows, we denote by D
and Dmin the maximum and the minimum of the degrees of G1, . . . , GM respectively,1 so that
by the above discussion, D ≥ M .

Theorem 1.1. Fix K ≥ 1, δ ∈ (0, 1] and an integer M ≥ 1. Let g1, . . . , gM be additive
functions defined by the polynomials G1, . . . , GM such that the polynomials {G′

i}1≤i≤M ⊂ Z[T ]
are Q-linearly independent. Then g1, . . . , gM are jointly equidistributed modulo q, uniformly
for q ≤ (log x)K lying in Q(g1,...,gM ), under any of the following additional conditions.

(i) M = 1, and either q is squarefree or G1 is linear.

(ii) M ≥ 2, q ≤ (log x)(1−δ)/(M−1), and either q is squarefree or at least one of G1, . . . , GM

is linear.

(iii) q ≤ (log x)(1−δ)(M−1/Dmin)
−1
.

Subpart (i) and the special case M = 1 of subpart (iii) are the main results in [1], but we have
included them here in order to give a self-contained and unified treatment. These assertions
will of course be automatically established by our method as well. However, our method is
significantly different from [1] and there are several additional ideas required to generalize these
special cases to our theorem above.

In subsection 4.1, we shall show that the ranges of q in the subparts of the above theorem are
all essentially optimal. In the constructions described there, the obstructions to uniformity
will come from the prime inputs p. Modifying the construction slightly, we could produce
obstructions of the form mp with m fixed or even slowly growing with x. Our next two
results point out that the inputs n with too few ‘large’ prime factors do indeed present the key
obstructions to uniformity. In other words, we show that uniformity in q up to an arbitrary
power of log x can be restored by restricting the set of inputs n to those having sufficiently
many prime divisors (counted with multiplicty) exceeding q.

To make this precise, we write P (n) for the largest prime divisor of n, with the convention that
P (1) = 1. We set P1(n) := P (n) and define, inductively, Pk(n) := Pk−1(n/P (n)). Thus, Pk(n)
is the kth largest prime factor of n (counted with multiplicity), with Pk(n) = 1 if Ω(n) < k.

Theorem 1.2. Fix K,M ≥ 1 and let g1, . . . , gM be additive functions defined by the poly-
nomials G1, . . . , GM , such that {G′

i}1≤i≤M ⊂ Z[T ] are Q-linearly independent. Assume that
D = max1≤i≤M degGi ≥ 2. We have

#{n ≤ x : PMD+1(n) > q, (∀i) gi(n) ≡ bi (mod q)}

1The asymmetry in notation is due to the much greater frequency of the appearance of D in our results, as
compared to Dmin.
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∼ 1

qM
#{n ≤ x : PMD+1(n) > q} ∼ x

qM
as x → ∞,

uniformly in moduli q ≤ (log x)K lying in Q(g1,...,gM ), and in residue classes b1, . . . , bM mod q.

Here we omit the possibility D = 1, as in this case, the fact that D ≥ M forces M = 1,
putting us in the setting of Theorem 1.1(i), where we already have complete uniformity in q.
For squarefree moduli q, it turns out that a much weaker restriction on the inputs suffices: we
need only assume that n has at least twice as many prime factors (counted with multiplicity)
exceeding q as the number M of additive functions considered.

Theorem 1.3. Fix K ≥ 1, M ≥ 2 and let g1, . . . , gM be additive functions defined by the
polynomials G1, . . . , GM , such that {G′

i}1≤i≤M ⊂ Z[T ] are Q-linearly independent. We have

#{n ≤ x : P2M(n) > q, (∀i) gi(n) ≡ bi (mod q)}

∼ 1

qM
#{n ≤ x : P2M(n) > q} ∼ x

qM
as x → ∞,

uniformly in squarefree q ≤ (log x)K lying in Q(g1,...,gM ), and in residues b1, . . . , bM mod q.

Here, we omit the case M = 1 as complete uniformity in squarefree q ≤ (log x)K has already
been attained in Theorem 1.1(i). In subsection 6.1, we will show that the restriction P2M(n) > q
is nearly optimal in the sense that it cannot be weakened to P2M−3(n) > q for any M ≥ 2,
and that for M = 2, it cannot be weakened to P2M−2(n) > q either.

We now illustrate the necessity of our recurring linear independence hypothesis. It turns
out that if the polynomials {G′

i}Mi=1 are not assumed to be Q-linearly independent, then the
M congruences gi(n) ≡ bi (mod q) might degenerate to (at most) M − 1 congruences for
sufficiently many inputs n. As such, it is not possible to restore uniformity in moduli q ≤
(log x)K no matter how many prime factors of our inputs n we assume to be larger than q.
Specifically, for any large integer R, we can always construct integers b1, . . . , bM which are
overrepresented by the g1, . . . , gM among the set of inputs n ≤ x having PR(n) > q. We show
this precisely below; in what follows, P−(q) denotes the smallest prime divisor of q.

Theorem 1.4. Fix K ≥ 1,M ≥ 2 and polynomials G1, . . . , GM−1 ∈ Z[T ] such that {G′
i}M−1

i=1 ⊂
Z[T ] are Q-linearly independent. Consider nonzero integers {ai}M−1

i=1 and a polynomial GM ∈
Z[T ] satisfying G′

M =
∑M−1

i=1 aiG
′
i and GM(0) ̸=

∑M−1
i=1 aiGi(0). Let g1, . . . , gM be additive

functions defined by the polynomials G1, . . . , GM . There exists a computable constant CĜ > 0

depending only on the system Ĝ := (G1, . . . , GM) that satisfies the following properties:

For any integer Q > 1 with P−(Q) > CĜ, g1, . . . , gM are jointly equidistributed mod Q. How-

ever, for any fixed R > CĜ and any integers {bi}M−1
i=1 , there exists an integer bM such that

#{n ≤ x : PR(n) > q, (∀i) gi(n) ≡ bi (mod q)} ≫ x(log2 x)
R−1

qM−1 log x
as x → ∞,

uniformly in moduli q ≤ (log x)K having P−(q) > CĜ.
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Thus, the above theorem shows that without the Q-linear independence of the {G′
i}Mi=1, unifor-

mity could fail to all moduli q > log x having sufficiently large prime factors, despite g1, . . . , gM
being jointly equidistributed to any fixed modulus having sufficiently large prime factors. We
expect that with appropriate modifications of our methods, it might be possible to obtain ana-
logues of Theorems 1.1, 1.2 and 1.3 (with more limited ranges of unformity in q) when {G′

i}Mi=1

are not Q-linearly independent: from the arguments we shall give for our main results, it seems
reasonable to expect that the corresponding ranges of q and restrictions on the inputs n should
then depend on the rank of the matrix of coefficients of the polynomials {G′

i}Mi=1.

We conclude this introductory section with the remark that although for the sake of simplicity
of statements, we have been assuming that our additive functions {gi}Mi=1 and polynomials
{Gi}Mi=1 are both fixed, our proofs of Theorems 1.1, 1.2, 1.3 and 1.4 will reveal that these
results are also uniform in the additive functions {gi}Mi=1 as long as they are defined by the
fixed polynomials {Gi}Mi=1.

Notation and conventions: Given polynomials G1, . . . , GM ∈ Z[T ], we shall always use D
and Dmin to denote the maximum and the minimum of the degrees of the Gi, respectively. As
mentioned previously, we shall use Pk(n) to denote the k-th largest prime factor of n (counted
with multiplicity), P (n) to denote P1(n), and P−(n) to denote the least prime divisor of n.
We denote the number of primes dividing q counted with and without multiplicity by Ω(q)
and ω(q) respectively, and we write Uq to denote the group of units (or multiplicative group)
modulo q, so that #Uq = φ(q), the Euler totient of q. When there is no danger of confusion,
we shall write (a1, . . . , ak) in place of gcd(a1, . . . , ak).

Throughout, the letters p and ℓ are reserved for primes. Implied constants in ≪ and O-
notation, as well as implicit constants in qualifiers like “sufficiently large”, may always depend
on any parameters declared as “fixed”; in particular, they will always depend on the polyno-
mials G1, . . . , GM . Other dependence will be noted explicitly (for example, with parentheses

or subscripts); notably, we shall use C(Ĝ) or CĜ to denote constants depending only on the

vector Ĝ := (G1, . . . , GM) of defining polynomials. For a nonzero polynomial H ∈ Z[T ], we
use ordℓ(H) to denote the highest power of ℓ dividing all the coefficients of H; for an integer
m ̸= 0, we shall sometimes use vℓ(m) in place of ordℓ(m). For a positive integer n, we define

Ω∗
>q(n) :=

∑
pk∥n

p>q, k>1

k to be the number of prime divisors of n (counted with multiplicity) that

exceed q and do not exactly divide n (that is, appear to an exponent greater than 1 in the
prime factorization of n). We write logk for the k-th iterate of the natural logarithm.

2. Preliminary Discussion: Delange’s equidistribution criteria and
consequences for polynomially-defined additive functions

The following result of Delange provides a characterization for when a single additive function
is equidistributed to a given integer modulus (see Theorem 1 and Remark 3.1.1 in [5]).

Proposition 2.1. Let f be an integral-valued additive function and q > 1 a given integer.
Consider the sums Sd :=

∑
p: d∤f(p) 1/p. Then f is equidistributed mod q if and only if Sℓ

diverges for every odd prime ℓ dividing q and one of the following hold:
(i) q is odd;
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(ii) 2 ∥ q, and either S2 diverges or f(2r) is odd for all r ≥ 1;
(iii) 4 | q, S4 diverges, and either S2 diverges or f(2r) is odd for all r ≥ 1.

In his sequel [6] to the aforementioned paper, Delange characterizes when a given family
f1, . . . , fM of integral-valued additive functions is jointly equidistributed to a given integer
modulus q, by reducing the problem to the equidistribution of a single additive function. The
following is the relevant special case of Delange’s result (which corresponds to the assignment
q′i := 1, δ := q in the result stated in section 4 of [6]).

Proposition 2.2. A given family f1, . . . , fM of integral-valued additive functions is jointly
equidistributed modulo q > 1 if and only if for all integers k1, . . . , kM satisfying gcd(k1, . . . , kM) =
1,2 the additive function k1f1 + · · ·+ kMfM is equidistributed mod q.

We remark that the formulation above is equivalent to that in [6, Section 4], which is stated

with the additional restriction that k1, . . . , kM ∈ {0, . . . , q−1}. Indeed, assume that
∑M

i=1 λigi
is equidistributed mod q for all (λ1, . . . , λM) ∈ {0, 1 · · · , q − 1}M satisfying gcd(λ1, . . . , λM) =

1. We claim that
∑M

i=1 kigi is equidistributed mod q for all (k1, . . . , kM) ∈ ZM satisfy-
ing gcd(k1, . . . , kM) = 1. To see this, we consider any tuple (k1, . . . , kM) ∈ ZM having
gcd(k1, . . . , kM) = 1, and let k′

1, . . . , k
′
M ∈ {0, 1, . . . , q − 1} be the unique integers satisfy-

ing k′
i ≡ ki (mod q). Then d′ := gcd(k′

1, . . . , k
′
M) ∈ {1, . . . , q − 1} must be coprime to q, for

otherwise, there is a prime ℓ dividing gcd(q, k′
1, . . . , k

′
M) hence also dividing gcd(q, k1, . . . , kM)

= 1. Write k′
i =: d′k′′

i for some k′′
1 , . . . , k

′′
M ∈ {0, 1, . . . , q − 1} having gcd(k′′

1 , . . . , k
′′
M) = 1.

Since d′ is invertible mod q and the function
∑M

i=1 k
′′
i gi is equidistributed mod q, it follows so

is the function
∑M

i=1 kigi, as
∑M

i=1 kigi ≡
∑M

i=1 k
′
igi ≡ d′

∑M
i=1 k

′′
i gi (mod q).

Propositions 2.1 and 2.2 lead to the following consequences in our setting of polynomially-
defined additive functions, which is how they shall be useful to us. In what follows, for a given
polynomial G ∈ Z[T ], we let

αG(q) :=
1

φ(q)
#(G−1(Uq) ∩ Uq) =

1

φ(q)
#{v ∈ Uq : G(v) ∈ Uq}

denote the proportion of unit residues v mod q whose image under the polynomial G is also a
unit mod q. By the Chinese Remainder Theorem, we see that αG(q) =

∏
ℓ|q αG(ℓ).

Lemma 2.3. Let g : N → Z be an additive function defined by a nonconstant polynomial
G ∈ Z[T ]. We can describe the set Qg = {q ∈ N : g is equidistributed mod q} as follows:

(i) If 2 | g(2r) for some r ≥ 1, then Qg = {q : αG(q) ̸= 0}.

(ii) If 2 ∤ g(2r) for all r ≥ 1 and if 4 | (G(1), G(3)), then

Qg = {q : 2 ∤ q, αG(q) ̸= 0} ∪ {q : 2 ∥ q, αG(q/2) ̸= 0}.

(iii) If 2 ∤ g(2r) for all r ≥ 1 and if 4 ∤ (G(1), G(3)), then Qg = {q : αG(q/2
v2(q)) ̸= 0}.

2Whenever we speak of gcd(k1, . . . , kM ), we assume implicitly that (k1, . . . , kM ) ̸= (0, . . . , 0).
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Proof. In what follows, let q′ := q/2v2(q) denote the largest odd divisor of q. An application of
the Siegel–Walfisz Theorem with partial summation shows that for any divisor d > 1 of q and
any X > eq, we have

Sd(X) :=
∑
p≤X
d∤g(p)

1

p
=
∑
p≤X
d∤G(p)

1

p
=
∑
r∈Ud
d∤G(r)

∑
p≤X

p≡r mod d

1

p
+Oq(1) = βG(d) log2X +Oq(1),

where βG(d) := 1
φ(d)

#{r ∈ Ud : d ∤ G(r)}. Letting X → ∞, we deduce that the sum Sd =∑
p: d∤g(p) 1/p diverges if and only if βG(d) ̸= 0. But since βG(ℓ) = αG(ℓ) for any prime ℓ,

Proposition 2.1 shows that if q ∈ Qg, then αG(ℓ) ̸= 0 for all odd primes ℓ dividing q, so that
αG(q

′) ̸= 0. On the other hand, if αG(q) ̸= 0 for some q, then βG(ℓ) = αG(ℓ) ̸= 0 for all primes
dividing q, so that Sℓ diverges for all such primes, and Proposition 2.1 leads to q ∈ Qg (since
S4 ≥ S2). In summary, we have so far shown that {q : αG(q) ̸= 0} ⊂ Qg ⊂ {q : αG(q

′) ̸= 0},
which in particular means that {q : 2 ∤ q, q ∈ Qg} = {q : 2 ∤ q, αG(q) ̸= 0}.

Now consider an even integer q ∈ Qg, so that it satisfies the necessary condition αG(q
′) ̸= 0.

(i) If 2 | g(2r) for some r ≥ 1, then by Proposition 2.1, the sum S2 must diverge. By
the above discussion, this means that αG(2) = βG(2) must be nonzero, leading to
αG(q) ̸= 0. Hence, in this case Qg = {q : αG(q) ̸= 0}.

(ii) Suppose 2 ∤ g(2r) for all r ≥ 1 and 4 | (G(1), G(3)). Then αG(2) = 0, so that by
Proposition 2.1(ii) and the discussion in the previous paragraph, we have {q : 2 ∥
q, q ∈ Qg} = {q : 2 ∥ q, αG(q/2) ̸= 0}. Moreover, no positive integer divisible by 4
can lie in Qg: this follows by Proposition 2.1(iii), since the condition 4 | (G(1), G(3))
implies that βG(4) = 0, and that S4 converges. Hence, in this case Qg is as in the
statement of the lemma.

(iii) Finally if 2 ∤ g(2r) for all r ≥ 1 and if 4 ∤ (G(1), G(3)), then S4 diverges, and Proposi-
tion 2.1 along with the inclusions obtained in the previous paragraph show that q lies
in Qg if and only if αG(q

′) ̸= 0.

This completes the proof of the lemma. □

The following observation paves the way for a simple application of Proposition 2.2 in the
setting of polynomially-defined additive functions.

Lemma 2.4. Let M ≥ 2 and g1, . . . , gM : N → Z be additive functions defined by the noncon-
stant polynomials G1, . . . , GM ∈ Z[T ], and let ℓ be a prime. If αk1G1+···+kMGM

(ℓ) ̸= 0 for all
integer tuples (k1, . . . , kM) satisfying gcd(k1, . . . , kM) = 1, then the polynomials G1, . . . , GM

must be Fℓ-linearly independent. Further, if ℓ > D + 1, then this condition is also sufficient.

Proof. To establish the first assertion, we assume by way of contradiction that there exist
µ1, . . . , µM ∈ {0, 1, . . . , ℓ−1} not all zero, such that

∑M
r=1 µrGr(T ) vanishes identically in Fℓ[T ].

We will construct integers k1, . . . , kM satisfying gcd(k1, . . . , kM) = 1 and αk1G1+···+kMGM
(ℓ) =

0. To that end, consider some i ∈ [M ] for which µi ̸≡ 0 (mod ℓ) and let kr := µr for all
r ∈ [M ] \ {i}.
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Now choose any j ∈ [M ] \ {i}. By the Chinese Remainder Theorem, there exists an integer ki
such that ki ≡ µi (mod ℓ) and gcd(ki, kj) = 1. With this choice of integers (k1, . . . , kM), we see

that gcd(k1, · · · , kM) = 1 and that the polynomial
∑M

r=1 krGr(T ) ≡
∑M

r=1 µrGr(T ) (mod ℓ) is
identically zero in Fℓ[T ], so that αk1G1+···+kMGM

(ℓ) = 0. This proves the first assertion of the
lemma.

To show the second assertion, we consider any prime ℓ > D + 1. Suppose there did exist
a tuple of integers (k1, . . . , kM) satisfying gcd(k1, . . . , kM) = 1 and αk1G1+···+kMGM

(ℓ) = 0.
Then on the one hand, (k1, . . . , kM) ̸≡ (0, . . . , 0) (mod ℓ). On the other hand, the polynomial∑M

r=1 krGr(T ) (considered as an element of Fℓ[T ]) has degree at most D but has at least

#Uℓ = φ(ℓ) = ℓ − 1 > D roots in Fℓ. As such,
∑M

r=1 krGr(T ) vanishes identically in Fℓ[T ]
yielding a nontrivial Fℓ-linear dependence relation between the {Gr}Mr=1. □

We remark that the matrix of coefficients alluded to towards the end of the introduction will
play a pivotal role in our arguments. To set things up, we write G′

i(T ) =:
∑D−1

r=0 ai,rT
r for

some integers {ai,r : 1 ≤ i ≤ M, 0 ≤ r ≤ D − 1}, so that ai,D−1 ̸= 0 for some i (since
D = max1≤i≤M degGi). Note that since Gi ∈ Z[T ], we have (r + 1) | ai,r for all i ∈ [M ] and
0 ≤ r ≤ D− 1. By the matrix of coefficients or coefficient matrix of the polynomials {G′

i}1≤i≤M ,
we shall mean the D ×M integer matrix

(2.1) A0 :=


a1,0 · · · aM,0

· · · · · · · · ·
· · · · · · · · ·

a1,D−1 · · · aM,D−1


whose the i-th column lists the coefficients of the polynomialG′

i in ascending order of the degree
of T . It is important to note that if the polynomials {G′

i}Mi=1 are Q-linearly independent, then
the columns of the matrix A0 form Q-linearly independent vectors, so that A0 has full rank.
As such, the Smith normal form S0 of A0 only has nonzero entries on its main diagonal. In
other words, A0 has exactly M invariant factors β1, . . . , βM ∈ Z \ {0}, which must also satisfy
βi | βi+1 for all 1 ≤ i < M . Furthermore, since S0 is obtained from A0 by a base change over
Z, it follows that the primes ℓ for which the columns of A0 (or equivalently, the polynomials
{G′

i}Mi=1) are Fℓ-linearly dependent are precisely those which divide at least one of the βi

(or equivalently, those which divide βM). As a consequence, letting C0(Ĝ) be any constant

exceeding max{D + 1, |βM |} (so that C0(Ĝ) depends only on the vector Ĝ := (G1, . . . , GM)),
we see that:

(2.2) The polynomials {G′
i}Mi=1 are Fℓ-linearly independent for all primes ℓ > C0(Ĝ).

Our arguments leading to (2.2) show that under the weaker hypothesis that the polynomials

{Gi}Mi=1 are Q-linearly independent, then there exists a constant C1(Ĝ) > D + 1 such that

{Gi}Mi=1 are Fℓ-linearly independent for all ℓ > C1(Ĝ). Note that if {G′
i}Mi=1 are Q (respectively,

Fℓ)-linearly independent, then so are {Gi}Mi=1. Hence, if {G′
i}Mi=1 are Q-linearly independent,

then with C0(Ĝ) as in (2.2), the {Gi}Mi=1 are also Fℓ-linearly independent for any prime ℓ >

C0(Ĝ). Combining these observations with Proposition 2.2 and Lemmas 2.3 and 2.4, we obtain
the following useful consequence.
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Corollary 2.5. Let g1, . . . , gM : N → Z be additive functions defined by the nonconstant
polynomials G1, . . . , GM ∈ Z[T ]. Then for any q > 1 with P−(q) > D + 1, the functions
g1, . . . , gM are jointly equidistributed mod q if and only if the polynomials {Gi}Mi=1 are Fℓ-
linearly independent for every prime ℓ | q. In particular,

(i) If the polynomials {Gi}Mi=1 are Q-linearly independent (so that C1(Ĝ) exists), then any

q having P−(q) > C1(Ĝ) lies in Q(g1,...,gM ).

(ii) If the polynomials {G′
i}Mi=1 are Q-linearly independent (so that C0(Ĝ) exists), then any

q having P−(q) > C0(Ĝ) lies in Q(g1,...,gM ).

3. Preparation for Theorems 1.1, 1.2 and 1.3: Obtaining the main term

We start by defining

J := J(x) := ⌊log3 x⌋.

Let δ ∈ (0, 1] be as in the statement of Theorem 1.1; the development in this section will also
go through in Theorems 1.2 and 1.3 with (say) δ := 1. We define

y := exp
(
(log x)δ/2

)
,

and call a positive integer n ≤ x convenenient if the J largest prime divisors of n exceed y and
exactly divide n, that is, if

max{PJ+1(n), y} < PJ(n) < · · · < P1(n).

Any convenient n can thus be uniquely written in the form mPJ · · ·P1, with

(3.1) Lm := max{y, P (m)} < PJ < · · · < P1.

We will show that the convenient n give the most dominant contribution to the counts con-
sidered in Theorems 1.1, 1.2 and 1.3.

Proposition 3.1. Fix K,M ≥ 1 and let g1, . . . , gM be additive functions defined by the noncon-
stant polynomials G1, . . . , GM ∈ Z[T ], such that {G′

i}1≤i≤M ⊂ Q[T ] are Q-linearly independent.
Let D = max1≤i≤M degGi. We have

#{n ≤ x : n convenient, (∀i) gi(n) ≡ bi (mod q)} ∼ x

qM
, as x → ∞,

uniformly in moduli q ≤ (log x)K lying in Q(g1,...,gM ), and in residues b1, . . . , bM mod q.

Proof. Writing each convenient n uniquely in the form mPJ · · ·P1, where m,PJ , . . . , P1 satisfy
(3.1), we find that gi(n) = gi(m) +

∑J
j=1 Gi(Pj). The conditions gi(n) ≡ bi (mod q) (1 ≤ i ≤

M) can then be rewritten as (P1, . . . , PJ) mod q ∈ V ′
q,m := VJ,M

(
q; (bi − gi(m))Mi=1

)
, where

VJ,M

(
q; (wi)

M
i=1

)
:=

{
(v1, . . . , vJ) ∈ (Uq)

J : (∀i)
J∑

j=1

Gi(vj) ≡ wi (mod q)

}
.
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(Note that this set can be defined for any set of polynomials {Gi}Mi=1 regardless of whether or
not they come from a set of additive functions.) As a consequence,∑

n≤x convenient
(∀i) gi(n)≡bi (mod q)

1 =
∑
m≤x

∑
(v1,...,vJ )∈V ′

q,m

∑
P1,...,PJ

P1···PJ≤x/m
Lm<PJ<···<P1

(∀j) Pj≡vj (mod q)

1

=
∑
m≤x

∑
(v1,...,vJ )∈V ′

q,m

1

J !

∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1,
(3.2)

where in the last equality above, we have noted that the conditions P1 · · ·PJ ≤ x/m and
(P1, . . . , PJ) mod q ∈ V ′

q,m are both independent of the ordering of P1, . . . , PJ .

We now estimate the innermost sum on P1, . . . , PJ by removing the congruence conditions on
the Pj. For each tuple (v1, . . . , vJ) mod q ∈ V ′

q,m, we see that∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1 =
∑

P2,...,PJ>Lm

P2···PJ≤x/mLm

P2,...,PJ distinct
(∀j) Pj≡vj (mod q)

∑
P1 ̸=P2,...,PJ

Lm<P1≤x/mP2···PJ

P1≡v1 (mod q)

1.

Since Lm ≥ y and q ≤ (log x)K = (log y)2K/δ, the Siegel–Walfisz theorem [14, Corollary 11.21]
yields ∑

P1 ̸=P2,...,PJ
Lm<P1≤x/mP2···PJ

P1≡v1 (mod q)

1 =
1

φ(q)

∑
P1 ̸=P2,...,PJ

Lm<P1≤x/mP2···PJ

1 +O

(
x

mP2 · · ·PJ

exp(−C0

√
log y)

)
,

for some positive constant C0 := C0(K, δ) depending only on K and δ. Putting this back into
the last display, we find that∑

P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1 =
1

φ(q)

∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

(∀j≥2) Pj≡vj (mod q)

1 + O

(
x

m
exp

(
−1

2
C0(log x)

δ/4

))
,

where we have put the bound

∑
P2,...,PJ≤x

1

P2 · · ·PJ

≤

∑
p≤x

1

p

J−1

≤ (2 log2 x)
J−1 ≤ exp(O((log3 x)

2)).



EQUIDISTRIBUTION OF FAMILIES OF POLYNOMIALLY-DEFINED ADDITIVE FUNCTIONS 11

Proceeding in the same way to successively remove the congruence conditions on P2, . . . , PJ ,
we deduce that

(3.3)
∑

P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

(∀j) Pj≡vj (mod q)

1 =
1

φ(q)J

∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

1 + O

(
x

m
exp

(
−1

4
C0(log x)

δ/4

))
.

Inserting this estimate into (3.2) and noting that #V ′
q,m ≤ φ(q)J ≤ (log x)KJ , we obtain

(3.4)
∑

n≤x convenient
(∀i) gi(n)≡bi (mod q)

1 =
∑
m≤x

#V ′
q,m

φ(q)J

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

1

)
+ O

(
x exp

(
−1

8
C0(log x)

δ/4

))
.

The following proposition, which we shall establish momentarily, will provide the desired es-
timate on the cardinalities of the sets V ′

q,m. For future convenience and independent interest,
we state it in slightly greater generality than necessary in our immediate application.

Proposition 3.2. Let G1, . . . , GM ∈ Z[T ] be nonconstant polynomials, such that {G′
i}1≤i≤M ⊂

Z[T ] are Q-linearly independent. Let D = max1≤i≤M degGi and C := C(Ĝ) be a constant

exceeding max{C0(Ĝ), (2D)2D+4}, where C0(Ĝ) is the constant in (2.2). We have

#VN,M

(
q; (wi)

M
i=1

)
φ(q)N

=

(
Q0

q

)M
{
#VN,M

(
Q0; (wi)

M
i=1

)
φ(Q0)N

+O

(
1

CN

)}∏
ℓ|q
ℓ>C

(
1 +O

(
(2D)N

ℓN/D−M

))
,

uniformly in N ≥ MD + 1, in all positive integers q > 1, and in residue classes w1, . . . , wM

mod q, where Q0 is a divisor of q of size O(1) supported on primes at most C.

To estimate the count #V ′
q,m in (3.4), we apply the above proposition with N := J which goes

to infinity with x and hence exceeds MD + 1 for all sufficiently large x. For the same reason,
we find that as x → ∞,∑

ℓ|q
ℓ>C

(2D)N

ℓN/D−M
≤ (2D)J

∑
ℓ|q
ℓ>C

1

ℓJ/(D+2)
≤ (2D)J

CJ/(2D+4)

∑
ℓ≥2

1

ℓ2
≤
(

2D

C1/(2D+4)

)J

= o(1).

As such, an application of the above proposition yields

#VJ,M

(
q; (wi)

M
i=1

)
φ(q)J

= (1 + o(1))

(
Q0

q

)M
{
#VJ,M

(
Q0; (wi)

M
i=1

)
φ(Q0)J

+O

(
1

CJ

)}
,
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uniformly in q and (w1, . . . , wM) mod q, where Q0 | q and Q0 = O(1). In particular, this same
estimate holds for V ′

q,m = VJ,M

(
q; (bi − gi(m))Mi=1

)
, and we obtain from (3.4),∑

n≤x convenient
(∀i) gi(n)≡bi (mod q)

1 = (1 + o(1))

(
Q0

q

)M∑
m≤x

{
#V ′

Q0,m

φ(Q0)J
+O(C−J)

}(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

1

)

+ O

(
x exp

(
−1

8
C0(log x)

δ/4

))
= (1 + o(1))

(
Q0

q

)M∑
m≤x

#V ′
Q0,m

φ(Q0)J

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

1

)
+ o

(
x

qM

)

where we have recalled that∑
m≤x

(
1

J !

∑
P1,...,PJ>Lm

P1···PJ≤x/m
P1,...,PJ distinct

1

)
≤
∑
m≤x

( ∑
P1,...,PJ

P1···PJ≤x/m
Lm<PJ<···<P1

1

)
≤ x.

But now, applying the estimate (3.4) with Q0 playing the role of q, we find that∑
n≤x convenient

(∀i) gi(n)≡bi (mod q)

1 = (1 + o(1))

(
Q0

q

)M ∑
n≤x convenient

(∀i) gi(n)≡bi (mod Q0)

1 + o

(
x

qM

)
.

Recall that any inconvenient n ≤ x either has PJ(n) ≤ y or has a repeated prime fac-
tor exceeding y. The number of n ≤ x satisfying the latter condition is no more than∑

p>y

∑
n≤x: p2|n 1 ≤ x

∑
p>y 1/p

2 ≪ x/y = o(x). Moreover, by [17, Lemma 2.3], the num-

ber of n ≤ x having PJ(n) ≤ y is ≪ x(log2 x)
J−1/(log x)1−δ which is also o(x). This yields∑

n≤x convenient
(∀i) gi(n)≡bi (mod q)

1 = (1 + o(1))

(
Q0

q

)M ∑
n≤x

(∀i) gi(n)≡bi (mod Q0)

1 + o

(
x

qM

)
.

Finally, since q lies in Q(g1,...,gM ), so does its divisor Q0, and as Q0 = O(1), the sum occurring
on the right hand side above is (1 + o(1))x/QM

0 . This completes the proof of Proposition 3.1,
up to that of Proposition 3.2. □

Before beginning the proof of Proposition 3.2, we state some (relevant special cases of) known
bounds on mixed exponential sums, which will provide some key technical inputs in our argu-
ments. First, we have the renowned bound of Weil [21] coming from his work on the Riemann
Hypothesis for curves over a finite field (see also Schmidt [19, chapter II, Corollary 2F]). In
what follows, we set e(t) := exp(2πit). For a positive integer Q, we use χ0,Q to denote the triv-
ial (or principal) character mod Q. For a prime ℓ, χ0,ℓ is also the principal character modulo
any power of ℓ.
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Proposition 3.3. Let F ∈ Z[T ] be a polynomial of degree D0 ≥ 1, and let ℓ > D0 be a prime
such that F doesn’t reduce to a constant modulo ℓ. Then we have∣∣∣∣∣ ∑

v mod ℓ

χ0,ℓ(v)e(F (v)/ℓ)

∣∣∣∣∣ ≤ D0ℓ
1/2.

We will also need analogues of the above bound for prime powers, which have been obtained
by Cochrane and Zheng [4, equation (1.13), Theorems 1.1 and 8.1]. (See [3] for more general
results.) In what follows, for a nonconstant polynomial F ∈ Z[T ] and a prime ℓ, we define
tℓ(F ) := ordℓ(F

′), that is tℓ(F ) is the highest power of ℓ dividing the coefficients of the
polynomial F ′. Let AF,ℓ denote the set of nonzero roots in Fℓ of the polynomial ℓ−tℓ(F )F ′

(considered as a nonzero element of Fℓ[T ]). We use Mℓ(F ) to denote the maximum of the
multiplicities of the zeros of ℓ−tℓ(F )F ′ in Fℓ, with Mℓ(F ) := ∞ if there is no such zero.

Proposition 3.4. Let F ∈ Z[T ] be a polynomial of degree D0 ≥ 1, and let ℓe be a prime power
such that F doesn’t reduce to a constant modulo ℓ. Let t := tℓ(F ) and M := Mℓ(F ).

(i) If ℓ > 2 and e ≥ t+ 2, then∣∣∣∣∣∣
∑

v mod ℓe

χ0,ℓ(v)e(F (v)/ℓe)

∣∣∣∣∣∣ ≤ D0 · ℓt/(M+1) · ℓe(1−1/(M+1)).

(ii) For ℓ = 2 and e ≥ t+ 3, we have∣∣∣∣∣∣
∑

v mod 2e

χ0,2(v)e(F (v)/2e)

∣∣∣∣∣∣ ≤ 2D0 · 2t/(M+1) · 2e(1−1/(M+1)).

Proof of Proposition 3.2. We start by showing that

(3.5) #VN,M

(
ℓe; (wi)

M
i=1

)
=

φ(ℓe)N

ℓeM

(
1 +O

(
(2D)N

ℓN/D−M

))
uniformly for all primes ℓ > C = C(Ĝ), positive integers e ≥ 1 and N ≥ MD + 1, and
wi ∈ Z/ℓeZ. Indeed, by the orthogonality of additive characters, we can write

#VN,M

(
ℓe; (wi)

M
i=1

)
= #

{
(v1, . . . , vN) ∈ (Uℓe)

N : (∀i)
N∑
j=1

Gi(vj) ≡ wi (mod ℓe)

}

=
∑

(v1,...,vN )∈(Uℓe )
N

M∏
i=1

 1

ℓe

∑
ri mod ℓe

e
(
−riwi

ℓe

)
e

(
ri
ℓe

N∑
j=1

Gi(vj)

)
=

φ(ℓe)N

ℓeM

1 +
1

φ(ℓe)N

∑
(r1,...,rM )̸≡(0,...,0) mod ℓe

e

(
− 1

ℓe

M∑
i=1

riwi

)
(Zℓe; r1,...,rM )N

 ,

(3.6)
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where Zℓe; r1,...,rM :=
∑

v mod ℓe

χ0,ℓ(v)e

(
1
ℓe

M∑
i=1

riGi(v)

)
and χ0,ℓ denotes the trivial character mod

ℓe (which is also the trivial character mod ℓ). Now in the case D = 1, we must have M = 1, so
that we may write G1(T ) =: AT +B for some integers A ̸= 0 and B. For each nonzero residue
r mod ℓe, we have r =: ℓe−e0r′ for some e0 ∈ {1, · · · , e} and some coprime residue r′ mod

ℓe0 . Hence, |Zℓe; r| = ℓe−e0

∣∣∣∣∑ v mod ℓe0
gcd(v,ℓe0 )=1

e(r′Av/ℓe0)

∣∣∣∣. The last sum being a Ramanujan sum is

nonzero precisely when ℓe0−1|r′A (see properties of Ramanujan sums in [9] and [14]). But this

forces e0 = 1 because ℓ ∤ A (by definition of C0(Ĝ) = C0({G1})) and ℓ ∤ r′ (by definition of r′.)
If e0 = 1, then |Zℓe; r| ≤ ℓe−1, and since there are at most ℓ many residues r mod ℓe which are
divisible by ℓe−1, we find from (3.6) that

#VN,M

(
ℓe; (wi)

M
i=1

)
=

φ(ℓe)N

ℓe

{
1 +O

(
1

φ(ℓe)N
· ℓ · (ℓe−1)N

)}
=

φ(ℓe)N

ℓe

{
1 +O

(
2N

ℓN−1

)}
uniformly in N ≥ 1. This establishes the bound (3.5) in the case D = 1, so in order to complete
the proof of (3.5), we may assume that D ≥ 2.

Now for a given tuple (r1, . . . , rM) ̸≡ (0, . . . , 0) mod ℓe, we must have gcd(ℓe, r1, . . . , rM) = ℓe−e0

for some 1 ≤ e0 ≤ e. Hence, we can write ri := ℓe−e0r′i for some (r′1, . . . , r
′
M) mod ℓe0 satisfying

(r′1, . . . , r
′
M) ̸≡ (0, . . . , 0) mod ℓ, which shows that

|Zℓe; r1,...,rM | = ℓe−e0

∣∣∣∣∣∣
∑

v mod ℓe0

χ0,ℓ(v)e

 1

ℓe0

M∑
i=1

r′iGi(v)

∣∣∣∣∣∣ = ℓe−e0

∣∣∣∣∣∣
∑

v mod ℓe0

χ0,ℓ(v)e

(
F (v)

ℓe0

)∣∣∣∣∣∣ ,
where F (T ) :=

∑M
i=1 r

′
i(Gi(T ) − Gi(0)). Now we observe that since ℓ > C(Ĝ) > C0(Ĝ), the

polynomials {G′
i}Mi=1 are Fℓ-linearly independent, hence so are the polynomials {Gi−Gi(0)}Mi=1.

This prevents the polynomial F from reducing to a constant mod ℓ (for if it did, then this
constant would be zero). Consequently, if e0 = 1, then Proposition 3.3 yields |Zℓe; r1,...,rM | ≤
ℓe−e0 · Dℓ1/2 = Dℓe−1/2. On the other hand, if e0 ≥ 2, then from Proposition 3.4(i), we
obtain |Zℓe; r1,...,rM | ≤ ℓe−e0 · Dℓe0(1−1/D) = Dℓe−e0/D; here we have noted that ℓ > C > 2,

tℓ(F ) = ordℓ(F
′) = ordℓ

(∑M
i=1 r

′
iG

′
i

)
= 0 ≤ e0 − 2 and that Mℓ(F ) ≤ deg(F ′) ≤ D − 1. For

each 1 ≤ e0 ≤ e, there are at most ℓe0M many possible tuples (r′1, . . . , r
′
M) mod ℓe0 , hence at

most ℓe0M tuples (r1, . . . , rM) mod ℓe satisfying gcd(ℓe, r1, . . . , rM) = ℓe−e0 . We deduce that∑
(r1,...,rM )̸≡(0,...,0) mod ℓe

|Zℓe; r1,...,rM |N ≤ ℓM
(
Dℓe−1/2

)N
+
∑

2≤e0≤e

ℓe0M
(
Dℓe−e0/D

)N
≤
∑

1≤e0≤e

ℓe0M
(
Dℓe−e0/D

)N ≤ DNℓeN

ℓN/D−M

∑
r≥0

1

(ℓN/D−M)
r ≪ DNℓeN

ℓN/D−M
,

where the last bound uses the fact that N/D −M ≥ 1/D, so that the last sum occurring in

the above display is no more than
∑
r≥0

2−r/D ≪ 1. (It is while passing from the first line to the

second in the above display where we use the assumption that D ≥ 2.) Inserting the bound
obtained above into (3.6) and noting that ℓ/(ℓ− 1) ≤ 2 completes the proof of estimate (3.5).
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Given an arbitrary positive integer q, let q̃ :=
∏

ℓe∥q
ℓ≤C

ℓe denote the largest divisor of q supported

on primes not exceeding the constant C (the “C-smooth part” of q). We can again invoke the
orthogonality of additive characters to write, for any tuple of residues (w1, . . . , wM) mod q̃,

#VN,M

(
q̃; (wi)

M
i=1

)
= #

{
(v1, . . . , vN) ∈ (Uq̃)

N : (∀i)
N∑
j=1

Gi(vj) ≡ wi (mod q̃)

}

=
1

q̃M

∑
r1,...,rM mod q̃

e

(
−1

q̃

M∑
i=1

riwi

)
(Zq̃; r1,...,rM )N ,

(3.7)

where Zq̃; r1,...,rM :=
∑

v mod q̃

χ0,q̃(v)e

(
1
q̃

M∑
i=1

riGi(v)

)
and χ0,q̃ denotes the trivial character mod q̃.

Now with β1, . . . , βM being the invariant factors of the matrix A0 defined in (2.1) (listed in

ascending order), we fix R := R(Ĝ) ∈ N≥2 to be any integer constant such that

R > CD(4D|βM |)C .

Let Q1 :=
∏

ℓe∥q̃: e>R ℓe−R and Q0 := q̃/Q1 =
∏

ℓe∥q̃ ℓ
min{e,R} =

∏
ℓe∥q: ℓ≤C ℓmin{e,R}, so that

Q0 | q and Q0 ≤
∏

ℓ≤C ℓR ≪ 1. We write #VN,M

(
q̃; (wi)

M
i=1

)
=: S ′ + S ′′, where S ′ counts the

contribution of all tuples (r1, . . . , rM) mod q̃ where all the components ri are divisible by Q1,
that is,

S ′ :=
1

q̃M

∑
r1,...,rM mod q̃

(r1,...,rM )≡(0,...,0) mod Q1

e

(
−1

q̃

M∑
i=1

riwi

)
(Zq̃; r1,...,rM )N .

Any tuple (r1, . . . , rM) mod q̃ counted in S ′ is thus of the form (Q1s1, . . . , Q1sM) for some
tuple (s1, . . . , sM) mod Q0 that is uniquely determined by (r1, . . . , rM). We find that

Zq̃; r1,...,rM =
∑

v mod q̃

χ0,q̃(v)e

 1

Q0

M∑
i=1

siGi(v)


=
∑

u mod Q0

χ0,Q0(u)e

 1

Q0

M∑
i=1

siGi(u)

 ∑
v∈Uq̃

v≡u mod Q0

1 =
φ(q̃)

φ(Q0)
ZQ0; s1,...,sM

where the last equality above follows from a simple counting argument. Consequently,

S ′ =
1

q̃M

(
φ(q̃)

φ(Q0)

)N ∑
s1,...,sM mod Q0

e

(
− 1

Q0

M∑
i=1

siwi

)
(ZQ0; s1,...,sM )N .

An application of the orthogonality identity (3.7) with Q0 playing the role of q̃ yields

(3.8) S ′ =

(
Q0

q̃

)M (
φ(q̃)

φ(Q0)

)N

#VN,M

(
Q0; (wi)

M
i=1

)
.
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Now we consider the sum

S ′′ =
1

q̃M

∑
r1,...,rM mod q̃

(r1,...,rM )̸≡(0,...,0) mod Q1

e

(
−1

q̃

M∑
i=1

riwi

)
(Zq̃; r1,...,rM )N .

Consider any tuple (r1, . . . , rM) mod q̃ occurring in S ′′. By the definition of Q1, there exists
a prime power ℓe ∥ q̃ for which e > R but vℓ(gcd(r1, . . . , rM)) < e − R. Letting Q′ :=
q̃/ gcd(q̃, r1, . . . , rM) and r′i := ri/ gcd(q̃, r1, . . . , rM) (for 1 ≤ i ≤ M), we therefore deduce that
for any such aforementioned prime ℓ, we have vℓ(Q

′) > R, so that Q′ is not (R + 1)-free.
Moreover, r′1, . . . , r

′
M are uniquely determined mod Q′ and satisfy gcd(Q′, r′1, . . . , r

′
M) = 1.

Now for each i, we can write r′i/Q
′ =

∑
ℓeℓ∥Q′ r′i,ℓ/ℓ

eℓ mod 1, where the sum is over the prime

powers ℓeℓ exactly dividing Q′; 3 here, for each ℓeℓ ∥ Q′, r′i,ℓ is uniquely determined mod ℓeℓ

by the relation r′i,ℓ
∏

pep∥Q′

p ̸=ℓ

pep ≡ r′i (mod ℓeℓ). Since gcd(Q′, r′1, . . . , r
′
M) = 1, it follows that

ℓ ∤ gcd(r′1,ℓ, . . . , r′M,ℓ) for each prime ℓ | Q′. By the Chinese Remainder Theorem, we can factor

(3.9) Zq̃; r1,...,rM =
φ(q̃)

φ(Q′)

∑
v mod Q′

χ0,Q′(v)e

(
1

Q′

M∑
i=1

r′iGi(v)

)
=

φ(q̃)

φ(Q′)

∏
ℓeℓ∥Q′

Zℓeℓ ; r′1,ℓ,...,r
′
M,ℓ

.

Write G′
i(T ) =:

∑D−1
j=0 ai,jT

j as in the discussion preceding (2.1). We claim that for any prime

ℓ | Q′,

(3.10) tℓ := tℓ(r
′
1,ℓ, . . . , r

′
M,ℓ) := ordℓ

(
M∑
i=1

r′i,ℓG
′
i

)
= vℓ

(
gcd

0≤j≤D−1

M∑
i=1

ai,jr
′
i,ℓ

)
≤ vℓ(βM),

where (recall) β1, . . . , βM are the invariant factors of the matrix A0 in (2.1). The third equality

simply follows from the fact that
∑M

i=1 r
′
i,ℓG

′
i(T ) =

∑D−1
j=0

(∑M
i=1 ai,jr

′
i,ℓ

)
T j. To show the

inequality in (3.10), it suffices to show that ℓtℓ must divide βM . To do the latter, we recall
that, by the theory of modules over a principal ideal domain, that there exist a D×D integer
matrix P0 and an M×M integer matrix R0 such that detP0, detR0 ∈ {±1} and P0A0R0 is the
Smith normal form S0 of A0. As such, P0A0 = S0R

−1
0 where the matrix R−1

0 has integer entries

(ki,j)1≤i,j≤M . Now ℓtℓ divides all the numbers {
∑M

i=1 ai,jr
′
i,ℓ : 0 ≤ j ≤ D−1}, which are precisely

the entries of the matrix A0

(
r′1,ℓ . . . r′M,ℓ

)⊺
(here

(
r′1,ℓ . . . r′M,ℓ

)⊺
denotes the column vector

listing the r′i,ℓ). As such, ℓ
tℓ also divides the entries of the matrix P0A0

(
r′1,ℓ . . . r′M,ℓ

)⊺
, and

hence also those of the matrix

(3.11) S0R
−1
0


r′1,ℓ
. . .
. . .
r′M,ℓ


M×1

=



β1(k1,1r
′
1,ℓ + · · ·+ k1,Mr′M,ℓ)

. . .

. . .
βM(kM,1r

′
1,ℓ + · · ·+ kM,Mr′M,ℓ)

0
. . .
0


D×1

.

3We are just applying Bezout’s identity; equivalently, this may be thought of as partial fraction decomposi-
tion over the integers.
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But now if ℓ divides all of the numbers k1,1r
′
1,ℓ+ · · ·+k1,Mr′M,ℓ, . . . . . . , kM,1r

′
1,ℓ+ · · ·+kM,Mr′M,ℓ,

then

R−1
0


r′1,ℓ
. . .
. . .
r′M,ℓ


M×1

=


k1,1r

′
1,ℓ + · · ·+ k1,Mr′M,ℓ

· · ·
· · ·

kM,1r
′
1,ℓ + · · ·+ kM,Mr′M,ℓ


M×1

≡


0
· · ·
· · ·
0


M×1

(mod ℓ).

This forces ℓ to divide gcd(r′1,ℓ, . . . , r
′
M,ℓ), which is impossible since ℓ | Q′ (see the line preceding

(3.9)). Since ℓtℓ divides the entries of the rightmost matrix in (3.11), it follows that ℓtℓ must
divide at least one of the invariant factors βi, and hence must also divide βM . This establishes
our claim (3.10).

We will now show that for any prime power ℓeℓ ∥ Q′ for which eℓ > R, we have

(3.12) |Zℓeℓ ; r′1,ℓ,...,r
′
M,ℓ

| =

∣∣∣∣∣ ∑
v mod ℓeℓ

χ0,ℓ(v)e

(
1

ℓeℓ

M∑
i=1

r′i,ℓGi(v)

)∣∣∣∣∣ ≤ 2D|βM |ℓeℓ(1−1/D).

To show this, we note that since G′
i(T ) =

∑D−1
j=0 ai,jT

j, we have Gi(T )−Gi(0) =
∑D−1

j=0
ai,j
j+1

T j+1

(recall that (j + 1) | ai,j), so that with

cℓ := ordℓ

(
M∑
i=1

r′i,ℓ(Gi(T )−Gi(0))

)
= vℓ

(
gcd

0≤j≤D−1

∑M
i=1 ai,jr

′
i,ℓ

j + 1

)
,(3.13)

we have

|Zℓeℓ ; r′1,ℓ,...,r
′
M,ℓ

| =

∣∣∣∣∣ ∑
v mod ℓeℓ

χ0,ℓ(v)e

(
1

ℓeℓ−cℓ

D−1∑
j=0

(
ℓ−cℓ

∑M
i=1 ai,jr

′
i,ℓ

j + 1

)
vj+1

)∣∣∣∣∣
= ℓcℓ

∣∣∣∣∣ ∑
v mod ℓeℓ−cℓ

χ0,ℓ(v)e

(
F̃ (v)

ℓeℓ−cℓ

)∣∣∣∣∣ ,
where F̃ (T ) :=

∑D−1
j=0

(
ℓ−cℓ

∑M
i=1 ai,jr

′
i,ℓ

j+1

)
T j+1 ∈ Z[T ]. By (3.13) and (3.10), we see that F̃

cannot reduce to a constant mod ℓ and that cℓ ≤ tℓ ≤ vℓ(βM). Furthermore, (3.10) also shows

that ordℓ(F̃
′) = ordℓ

(∑D−1
j=0

(∑M
i=1 ai,jr

′
i,ℓ

)
T j
)
− cℓ = tℓ − cℓ ≤ vℓ(βM) − cℓ ≤ R − 3 − cℓ <

(eℓ− cℓ)− 3. (Here we use eℓ > R > |βM |+3.) Consequently, some subpart of Proposition 3.4
applies, yielding

|Zℓeℓ ; r′1,ℓ,...,r
′
M,ℓ

| ≤ ℓcℓ · 2Dℓordℓ(F̃
′) · ℓ(eℓ−cℓ)(1−1/(Mℓ(F̃ )+1))

≤ ℓcℓ · 2Dℓvℓ(βM )−cℓ · ℓeℓ(1−1/D) ≤ 2D|βM |ℓeℓ(1−1/D).

Here, Mℓ(F̃ ) is the largest multiplicity of a zero in Fℓ of the polynomial ℓ−ordℓ(F̃
′)F̃ ′, and we

have used that this multiplicity is no more than deg(F̃ ′) ≤ D − 1. This establishes (3.12).

Applying the bound (3.12) to each prime power ℓeℓ ∥ Q′ for which eℓ > R, and applying the
trivial bound |Zℓeℓ ; r′1,ℓ,...,r

′
M,ℓ

| ≤ φ(ℓeℓ) for all the other prime powers ℓeℓ ∥ Q′, the factorization
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(3.9) yields

|Zq̃; r1,...,rM | ≤ φ(q̃)

φ(Q′)

( ∏
ℓeℓ∥Q′

eℓ≤R

φ(ℓeℓ)

)
·

( ∏
ℓeℓ∥Q′

eℓ>R

2D|βM |ℓeℓ(1−1/D)

)

≤ (2D|βM |)ω(Q′) · φ(q̃) ·
∏

ℓeℓ∥Q′

eℓ>R

(
ℓeℓ(1−1/D)

φ(ℓeℓ)

)
≤ (4D|βM |)C · φ(q̃)

A1/D
.

Here A denotes the (R + 1)-full part of Q′ and in the last bound above, we have noted that
ω(Q′) ≤ ω(q̃) ≤

∑
ℓ≤C 1 ≤ C. Note that since Q′ is not (R + 1)-free, we have A > 1.

Applying this bound for each of the sums Zq̃; r1,...,rM occurring in S ′′, we obtain

|S ′′| ≤ (4D|βM |)CNφ(q̃)N

q̃M

∑
A|q̃: A>1

A is (R+1)-full

1

AN/D

∑
Q′,r′1,...,r

′
M

Q′|q̃: (R+1)-full part of Q′ is A
r′1,...,r

′
M mod Q′

gcd(r′1,...,r
′
M ,Q′)=1

∑
r1,...,rM mod q̃

Q′=q̃/ gcd(q̃,r1,...,rM )
(∀i) r′i=ri/ gcd(q̃,r1,...,rM )

1.

Since any choice of Q′ | q̃ and residues r′1, . . . , r
′
M mod Q′ uniquely determines r1, . . . , rM mod

q̃ by the relations ri = r′iq̃/Q
′, we see that

|S ′′| ≤ (4D|βM |)CNφ(q̃)N

q̃M

∑
A|q̃: A>1

A is (R+1)-full

1

AN/D

∑
Q′|q̃

(R+1)-full part of Q′ is A

∑
r′1,...,r

′
M mod Q′

gcd(r′1,...,r
′
M ,Q′)=1

1

≤ (4D|βM |)CNφ(q̃)N

q̃M

∑
A|q̃: A>1

A is (R+1)-full

1

AN/D

∑
Q′|q̃

(R+1)-full part of Q′ is A

(Q′)M .

Now any divisor Q′ of q̃ with (R + 1)-full part equal to A must be of the form Ad for some
(R + 1)-free divisor d of q̃, and d ≤

∏
ℓ|q̃ ℓR ≤

∏
ℓ≤C ℓR ≤ CCR ≪ 1. Consequently the

innermost sum in the last expression above is at most AM
∑

d|q̃
d is (R+1)-free

dM ≪ AM , leading to

|S ′′| ≪ (4D|βM |)CNφ(q̃)N

q̃M

∑
A|q̃: A>1

A is (R+1)-full

1

AN/D−M
,(3.14)

Since N ≥ MD + 1, we have N/D −M ≥ 1/D, so that for all primes ℓ,∑
v≥R+1

1

ℓv(N/D−M)
≤ 1

ℓ(R+1)(N/D−M)

∑
v≥0

1

ℓv/D
≤ 1

ℓ(R+1)(N/D−M)
· 21/D

21/D − 1
≤ 2D · 21/D

2(R+1)/D
≤ 2D2

R
≤ 1

2
.

(Here, we have noted that 21/D − 1 = exp(log 2/D) − 1 ≥ log 2/D > 1/2D and that 2R/D ≥
R/D ≥ 4D.) This means that for all primes ℓ ≤ C, we have

log

(
1 +

∑
v≥R+1

1

ℓv(N/D−M)

)
≪

∑
v≥R+1

1

ℓv(N/D−M)
≪ 1

ℓ(R+1)(N/D−M)
≪ 1

ℓRN/D
≤ 1

2RN/D
,
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and since q̃ is C-smooth, this leads to∑
A|q̃: A>1

A is (R+1)-full

1

AN/D−M
≤
∏
ℓ|q̃

(
1 +

∑
v≥R+1

1

ℓv(N/D−M)

)
− 1 = exp

(
O

(
1

2RN/D

))
− 1 ≪ 1

2RN/D
.

Inserting this into (3.14), we obtain

|S ′′| ≪
(
(4D|βM |)C

2R/D

)N
φ(q̃)N

q̃M
≤ C−N φ(q̃)N

q̃M
,

noting in the last step that (4D|βM |)C
/
2R/D ≤ D(4D|βM |)C

/
R ≤ C−1, by the definition of R.

From (3.8), we now obtain

#VN,M

(
q̃; (wi)

M
i=1

)
= S ′ + S ′′ =

(
Q0

q̃

)M

φ(q̃)N

{
#VN,M

(
Q0; (wi)

M
i=1

)
φ(Q0)N

+O
(
C−N

)}
.

Finally, writing #VN,M

(
q; (wi)

M
i=1

)
= #VN,M

(
q̃; (wi)

M
i=1

)∏
ℓe∥q: ℓ>C #VN,M

(
ℓe; (wi)

M
i=1

)
, and

invoking the estimate above for #VN,M

(
q̃; (wi)

M
i=1

)
in conjunction with (3.5) for all the powers

ℓe ∥ q of primes ℓ > C, we obtain the estimate claimed in Proposition 3.2. □

4. Joint equidistribution without input restriction: Proof of Theorem 1.1

By Proposition 3.1, it remains to show that the count of inconvenient n ≤ x for which all the
gi(n) ≡ bi (mod q) is o(x/qM) as x → ∞ in the prescribed ranges of q. Setting z := x1/ log2 x,
we first remove from these n ≤ x, the ones that either have P (n) ≤ z or have a repeated prime
factor exceeding y. By known estimates on smooth numbers [20, Theorem 5.13 and Corollary
5.19, Chapter III.5], the number of n ≤ x having P (n) ≤ z is O

(
x/(log x)(1+o(1)) log3 x

)
, and as

seen before, the number of n ≤ x having a repeated prime factor exceeding y is O(x/y). Both
of these bounds being o(x/qM), it suffices to consider the contribution Σ0 of those inconvenient
n ≤ x which have P (n) > z and do not possess any repeated prime factor exceeding y.

By the definition of “inconvenient”, any n counted in Σ0 must also have PJ(n) ≤ y, and hence
can be written in the form n = mP , where P := P (n) > z, PJ(m) ≤ y and gcd(m,P ) = 1. As
such, gi(n) = gi(m) +Gi(P ), and the congruence gi(n) ≡ bi (mod q) shows that P mod q lies
in the set V1,M

(
q; (bi − gi(m))Mi=1

)
. Setting

ξĜ(q) := max{#V1,M

(
q; (wi)

M
i=1

)
: w1, . . . , wM mod q},

the Brun-Titchmarsh theorem shows that for a given m, the number of possibilities for P is
no more than

(4.1)
∑

z<P≤x/m

P mod q ∈V1,M(q;(bi−gi(m))Mi=1)

1 ≪ ξĜ(q)
x/m

φ(q) log(z/q)
≪

ξĜ(q)

φ(q)

x log2 x

m log x
.

To estimate the sum of 1/m over m ≤ x having PJ(m) ≤ y, we write each such m in the form
BA where P (B) ≤ y < P−(A) and Ω(A) ≤ J . As such, the sum of the reciprocals of the
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possible A is at most∑
A≤x

Ω(A)≤J

1

A
≤

(
1 +

∑
p≤x

1

p

)J

≤ (2 log2 x)
J ≤ exp

(
O((log3 x)

2)
)
,

while the sum of the reciprocals of the possible B is no more than∑
B: P (B)≤y

1

B
≤
∏
p≤y

(
1 +

1

p
+O

(
1

p2

))
≤ exp

(∑
p≤y

1

p
+O(1)

)
≪ log y.

Collecting estimates, we obtain

(4.2)
∑
m≤x

PJ (m)≤y

1

m
≪ (log x)δ/2 exp

(
O((log3 x)

2)
)
,

which from the bound (4.1) reveals that

(4.3) Σ0 ≪
ξĜ(q)

φ(q)

x log2 x

(log x)1−δ/2
exp

(
O((log3 x)

2)
)
≪

ξĜ(q)

q

x

(log x)1−2δ/3
.

We now proceed to show the assertions in the three subparts of the theorem.

(i), (ii) If at least one ofG1, . . . , GM is linear, then ξĜ(q) ≪ 1 and we obtain Σ0 ≪ x/q(log x)1−2δ/3.
This is o(x/qM) as soon as qM−1 ≤ (log x)1−δ. This condition is tautological if M = 1, and for
M ≥ 2 it is equivalent to q ≤ (log x)(1−δ)/(M−1).

If q is squarefree, then with D1 = degG1, we see that #V1,M

(
q; (wi)

M
i=1

)
≤ #V1,1 (q;w1)

=
∏

ℓ|q #V1,1 (ℓ;w1) ≪ (D1)
ω(q) ≤ (log x)δ/100. (Here we have noted that for any sufficiently

large ℓ, the polynomial G1(T )−w1 cannot vanish identically mod ℓ, and hence has at most D1

roots mod ℓ.) As such, from (4.3), it follows that Σ0 ≪ x/q(log x)1−3δ/4. This is automatically
o(x/qM) if M = 1, while for M ≥ 2, we need only assume that q ≤ (log x)(1−δ)/(M−1).

(iii) Finally, assume (by relabelling if necessary) that degG1 = Dmin. By a result of Konyagin
[10, 11] we have #V1,M

(
q; (wi)

M
i=1

)
≤ #V1,1 (q;w1) ≪ q1−1/Dmin . (To be precise, we apply

Konyagin’s bound to the polynomial congruence (G1(T ) − w1)/d ≡ 0 (mod q/d), where d is
the greatest common divisor of q and the coefficients of the polynomial G1(T )−w1. Note that
each solution mod q/d lifts to a solution mod q in ≤ d ≪ 1 ways.) Consequently, we obtain
Σ0 ≪ x/q1/Dmin(log x)1−2δ/3. This is o(x/qM) as soon as qM−1/Dmin ≤ (log x)1−δ, completing
the proof of the theorem.

4.1. Optimality of range of q in Theorem 1.1. We will now construct polynomials
G1, . . . , GM which will show that the various restrictions on the range of q in Theorem 1.1
are all essentially optimal. To that end, let G ∈ Z[T ] be any monic polynomial having a
nonzero integer root a. Let Gi(T ) := G(T )i, so that the polynomials {G′

i}Mi=1 having dis-

tinct degrees are automatically Q-linearly independent. Letting C0(Ĝ) be the constant coming

from (2.2), Corollary 2.5 shows that any integer q having P−(q) > C0(Ĝ) lies in Q(g1,...,gM ).
Moreover, any prime p satisfying p ≡ a (mod q) also satisfies G(p) ≡ 0 (mod q), hence
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also gi(p) = Gi(p) = G(p)i ≡ 0 (mod q) for all i. As such, for all q ≤ (log x)K having

P−(q) > max{|a|, C0(Ĝ)}, the Siegel–Walfisz Theorem yields∑
n≤x

(∀i) gi(n)≡0 (mod q)

1 ≥
∑
p≤x

p≡a (mod q)

1 ≫ x

φ(q) log x
≫ x

q log x
.

For any M ≥ 2, this last expression grows strictly faster than x/qM as soon as qM−1 grows
faster than log x, for instance if q > (log x)(1+δ)/(M−1). This construction shows that the range
of q in Theorem 1.1(ii) is essentially optimal.

Now consider any M ≥ 1, D ≥ 1, and let G(T ) := (T − 1)d. Then with Gi(T ) = G(T )i, we
see that Dmin = d. For moduli q of the form qd1 (for some q1 > 1), any prime p ≡ 1 (mod q1)

satisfies G(p) = (p − 1)d ≡ 0 (mod q). Hence, if q1 ≤ (log x)K has P−(q1) > C0(Ĝ), then

q = qd1 ≤ (log x)Kd also has P−(q) > C0(Ĝ), and we find that on the one hand q ∈ Q(g1,...,gM ),
while on the other, ∑

n≤x
(∀i) gi(n)≡0 (mod q)

1 ≥
∑
p≤x

p≡1 (mod q1)

1 ≫ x

φ(q1) log x
≫ x

q1/d log x
.

This last expression grows strictly faster than x/qM as soon as qM−1/d grows faster than log x,

for instance if q > (log x)(1+δ)(M−1/d)−1
. Since d = Dmin, this example shows that the range of

q in Theorem 1.1(iii) is essentially optimal as well.

5. Complete uniformity for general moduli: Proof of Theorem 1.2

In section 3, we had defined J = ⌊log3 x⌋ and for the purposes of this theorem, we took
δ := 1, so that y = exp((log x)1/2). If x is sufficiently large then any convenient n has
PMD+1(n) ≥ PJ(n) ≥ y > q. Moreover, by [17, Lemma 2.3] the number of n ≤ x having
PMD+1(n) ≤ q is o(x). By Proposition 3.1, it remains to show that there are o(x/qM) many
inconvenient n ≤ x having PMD+1(n) > q and satisfying gi(n) ≡ bi (mod q) for all i.

Now by the arguments in the beginning of the previous section, the number of n ≤ x which
either have P (n) ≤ z = x1/ log2 x or have a repeated prime factor exceeding y is o(x/qM). As
such, in order to complete the proof of the theorem, it suffices to show that

(5.1)
∑

n≤x: PMD+1(n)>q
PJ (n)≤y; P (n)>z

p>y =⇒ p2∤n
(∀i) gi(n)≡bi (mod q)

1 ≪ x

qM(log x)1/3

uniformly in q ≤ (log x)K and in residues (b1, . . . , bM) mod q.

Assume first that M ≥ 2. To show (5.1) write the count on the left hand side as

Σ0 + Σ1 + Σ2 + Σ,

where

• Σ0 counts those n which are exactly divisible by at least MD+1 many distinct primes
exceeding q,
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• For r ∈ {1, 2}, Σr counts the n that are exactly divisible by at least (M − r)D+ 1 but
at most (M − r + 1)D many distinct primes exceeding q, and

• Σ counts the remaining n, namely, those that are exactly divisible by at most (M−2)D
many distinct primes exceeding q.

We proceed to show that the expression on the right hand side of (5.1) bounds each of Σ0,
Σ1, Σ2 and Σ. To do this, we shall bound the cardinalities of the sets VN,M

(
q; (wi)

M
i=1

)
that

arise by discarding some of the congruences defining the set. The following consequence of
Proposition 3.2 will be useful: for any fixed r ∈ {0, 1, . . . ,M − 1}, we have

(5.2) #V(M−r)D+1,M−r

(
q; (wi)

M−r
i=1

)
≪ φ(q)(M−r)D+1

qM−r
exp

(
O
(
(log q)1−1/D

))
uniformly in moduli q > 1 and in residue classes (w1, . . . , wM) mod q. Here, we have noted
that {G′

i}M−r
i=1 are Q-linearly independent, that max1≤i≤M−r degGi ≤ D, and that∏
ℓ|q

(
1 +O

(
1

ℓ1/D

))
≤ exp

O

∑
ℓ≤ω(q)

1

ℓ1/D

≪ exp
(
O
(
(log q)1−1/D

))
,

with the last sum on ℓ being bounded by partial summation and Chebyshev’s estimates.

Bounding Σ0: Any n counted in Σ0 is exactly divisible by at least MD+1 many prime factors
exceeding q and has P (n) > z, PJ(n) ≤ y. Hence, n can be written in the form mP1 · · ·PMD+1,
where P1 := P (n) > z, q < PMD+1 < · · · < P1, PJ(m) ≤ y and gcd(m,P1 · · ·PMD+1) = 1.
As such, gi(n) = gi(m) +

∑
1≤j≤MD+1 Gi(Pj) and the congruences gi(n) ≡ bi (mod q) force

(P1, . . . , PMD+1) mod q to lie in the set Vm := VMD+1,M

(
q; (bi − gi(m))Mi=1

)
.

Given m and v̂ := (v1, . . . , vMD+1) ∈ Vm, we count the number of possible P1, . . . , PMD+1

satisfying (P1, . . . , PMD+1) ≡ v̂ mod q. For a given choice of P2, . . . , PMD+1, the number of
possible P1 is, by the Brun-Titchmarsh inequality, no more than∑

z<P1≤x/mP2···PMD+1

P1≡v1 (mod q)

1 ≪ x/mP2 · · ·PMD+1

φ(q) log(z/q)
≪ x log2 x

φ(q)mP2 · · ·PMD+1 log x
.

For each j ∈ {2, . . . ,MD+1}, the sum on Pj is, by Brun-Titchmarsh and partial summation,
no more than ∑

q<p≤x
p≡vj (mod q)

1

p
≪ log2 x

φ(q)
.

Hence, givenm and v̂ = (v1, . . . , vMD+1) ∈ Vm, the number of possible P1, . . . , PMD+1 satisfying
(P1, . . . , PMD+1) ≡ v̂ mod q is

≪ x(log2 x)
O(1)

φ(q)MD+1m log x
,

leading to

Σ0 ≪
x(log2 x)

O(1)

log x

∑
m≤x

PJ (m)≤y

1

m
· #Vm

φ(q)MD+1
.



EQUIDISTRIBUTION OF FAMILIES OF POLYNOMIALLY-DEFINED ADDITIVE FUNCTIONS 23

Using (5.2) to bound Vm = VMD+1,M

(
q; (bi − gi(m))Mi=1

)
, followed by (4.2) to bound the re-

sulting sum on m, we deduce that

Σ0 ≪
x(log2 x)

O(1)

qM log x
exp

(
O
(
(log q)1−1/D

)) ∑
m≤x

PJ (m)≤y

1

m
≪ x

qM(log x)1/3
,

yielding the desired bound for Σ0. It is to be noted that this bound on Σ0 holds true for any
M ≥ 1.

Bounding Σ1: Recall that Ω∗
>q(n) :=

∑
pk∥n

p>q, k>1

k counts (with multiplicity) the number of prime

factors of n exceeding q that appear to an exponent larger than 1 in the prime factorization
of n; as such, the squarefull part of n (i.e., the largest squarefull divisor of n) exceeds qΩ

∗
>q(n).

Now, any n counted in Σ1 is exactly divisible by least (M−1)D+1 but at most MD many dis-
tinct primes exceeding q. Since PMD+1(n) > q, it follows that Ω∗

>q(n) ≥ 2, so that the square-

full part of n exceeds q2. As such, n can be written in the form mSP(M−1)D+1 · · ·P1, where
m,S, P(M−1)D+1, . . . , P1 are pairwise coprime, P1 := P (n) > z, q < P(M−1)D+1 < · · · < P1,
PJ(m) ≤ y, and S > q2 is squarefull. Since gi(n) = gi(mS) +

∑
1≤j≤(M−1)D+1Gi(Pj), the con-

gruence conditions gi(n) ≡ bi (mod q), considered for 1 ≤ i ≤ M−1, force (P1, . . . , P(M−1)D+1) ≡
v̂ mod q for some v̂ := (v1, . . . , v(M−1)D+1) ∈ V(M−1)D+1,M−1

(
q; (bi − gi(mS))M−1

i=1

)
.

Givenm,S and v̂, the argument given for bounding Σ0 above shows that the number of possible
P1, . . . , P(M−1)D+1 satisfying (P1, . . . , P(M−1)D+1) ≡ v̂ mod q is

≪ x(log2 x)
O(1)

φ(q)(M−1)D+1mS log x
.

This yields

Σ1 ≪
x(log2 x)

O(1)

log x

∑
m≤x

PJ (m)≤y

1

m

∑
S>q2 squarefull

1

S
·
#V(M−1)D+1,M−1

(
q; (bi − gi(mS))M−1

i=1

)
φ(q)(M−1)D+1

,

so that by (5.2),

Σ1 ≪
x(log2 x)

O(1)

qM−1 log x
exp

(
O
(
(log q)1−1/D

)) ∑
m≤x

PJ (m)≤y

1

m

∑
S>q2 squarefull

1

S
.

Using (4.2) along with the bound
∑

S>q2 squarefull 1/S ≪ 1/q, we obtain

Σ1 ≪
x(log2 x)

O(1)

qM(log x)1/2
exp

(
O
(
(log q)1−1/D + (log3 x)

2
))

≪ x

qM(log x)1/3
,

showing the desired bound for Σ1.

Bounding Σ2: Any n counted in Σ2 is exactly divisible by least (M − 2)D + 1 but at
most (M − 1)D many distinct primes exceeding q. Since PMD+1(n) > q, it follows that
Ω∗

>q(n) ≥ MD + 1 − (M − 1)D = D + 1. Now assume that D ≥ 3, so that Ω∗
>q(n) ≥ 4,

and the squarefull part of n exceeds q4. In this case, any n counted in Σ2 can be written
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in the form mSP(M−2)D+1 · · ·P1, where m,S, P(M−2)D+1, . . . , P1 are pairwise coprime, P1 :=
P (n) > z, q < P(M−2)D+1 < · · · < P1, PJ(m) ≤ y, and S > q4 is squarefull. Since
gi(n) = gi(mS)+

∑
1≤j≤(M−2)D+1 Gi(Pj), the congruence conditions gi(n) ≡ bi (mod q), consid-

ered for 1 ≤ i ≤ M−2, force (P1, . . . , P(M−2)D+1) ≡ v̂ mod q for some v̂ := (v1, . . . , v(M−2)D+1) ∈
V(M−2)D+1,M−2

(
q; (bi − gi(mS))M−2

i=1

)
. Replicating the argument given for Σ1 shows that

Σ2 ≪
x(log2 x)

O(1)

log x

∑
m≤x

PJ (m)≤y

1

m

∑
S>q4 squarefull

1

S
·
#V(M−2)D+1,M−2

(
q; (bi − gi(mS))M−2

i=1

)
φ(q)(M−2)D+1

≪ x(log2 x)
O(1)

qM−2 log x
exp

(
O
(
(log q)1−1/D

)) ∑
m≤x

PJ (m)≤y

1

m

∑
S>q4 squarefull

1

S

≪ x(log2 x)
O(1)

qM(log x)1/2
exp

(
O
(
(log q)1−1/D + (log3 x)

2
))

≪ x

qM(log x)1/3
.

showing the desired bound for Σ2 in the case D ≥ 3.

Now assume that D = 2, so that 2 ≤ M ≤ D = 2 forces M = 2. Any n counted in Σ2 has
P5(n) > q but at most (M − 1)D = 2 of these exactly divide n. Hence, n is either divisible by
the cube of a prime exceeding q or is (exactly) divisible by the squares of two distinct primes
exceeding q. Any n of the first kind can be written in the form mpsP for some primes p, P
satisfying P = P (n) > z and q < p < P , and some positive integers s,m satisfying s ≥ 3,
PJ(m) ≤ y. Given m, p and s, the number of possible P ∈ (z, x/mps] is O(x/mps log z).
Summing this over all s ≥ 3, all p > q, and then over all possible m, and invoking (4.2) in
conjunction with the fact that

∑
p>q 1/p

3 ≪ 1/q2, we find that the total contribution of all n

of the first kind is ≪ x/q2(log x)1/3 which is absorbed in the desired expression.

On the other hand, if n is divisible by the squares of two distinct primes exceeding q, then it is
of the form mps11 ps22 P for some primes P, p1, p2 satisfying P = P (n) > z and q < p2 < p1 < P ,
and for some positive integers m, s1, s2 satisfying s1 ≥ 2, s2 ≥ 2 and PJ(m) ≤ y. Given
m, p1, p2, s1, s2, the number of possible P ∈ (z, x/mps11 ps22 ] is O(x/mps11 ps22 log z). Summing this
over all possible si, pi, and m via (4.2) and the fact that

∑
p>q 1/p

2 ≪ 1/q, we deduce that the

total contribution of all n that are divisible by the squares of two primes is ≪ x/q2(log x)1/3.
This establishes the desired bound on the sum Σ2 in the remaining case D = 2.

Bounding Σ: Any n counted in Σ has PMD+1(n) > q, but no more than (M − 2)D of these
exactly divide n. Since D = max1≤i≤M degGi ≥ M , it follows that any such n has Ω∗

>q(n) ≥
MD + 1 − (M − 2)D = 2D + 1 ≥ 2M + 1, so that the squarefull part of n exceeds q2M+1.
Consequently, any n counted in Σ can be written in the form mSP , where P := P (n) > z,
S > q2M+1 is squarefull and PJ(m) ≤ y. Given m and S, the number of possible P ∈ (z, x/mS]
is O(x/mS log z). Summing this over all squarefull S > q2M+1 and then over all m by means
of (4.2), we find that

Σ ≪ x log2 x

log x

∑
m≤x

PJ (m)≤y

1

m

∑
S>q2M+1

S squarefull

1

S
≪ x

qM+1/2(log x)1/3
,
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yielding the desired bound for Σ, and completing the proof of the estimate (5.1), for M ≥ 2.

The case M = 1 is much simpler: we need only split the count in the left hand side of (5.1) as
Σ0+Σ where Σ0 counts those n that have no repeated prime factor exceeding q. As such, any
n counted in Σ0 is exactly divisible by at least D+1 primes exceeding q, whereupon the exact
same arguments given for the “Σ0” defined in the case M ≥ 2 show that Σ0 ≪ x/q(log x)1/3.
On the other hand, any n counted in Σ has a repeated prime factor exceeding q, and thus is
of the form mSP , with P := P (n) > z, S > q2 squarefull and PJ(m) ≤ y. Proceeding as for
the “Σ” considered in the case M ≥ 2, we obtain Σ ≪ x/q(log x)1/3. This shows the estimate
(5.1) in the remaining case M = 1, completing the proof of theorem. □

6. Complete uniformity in squarefree moduli: Proof of Theorem 1.3

Arguing as in the beginning of the previous section, in order to complete the proof of the
theorem, it suffices to show the following analogue of (5.1)

(6.1)
∑

n≤x: P2M (n)>q
PJ (n)≤y; P (n)>z

p>y =⇒ p2∤n
(∀i) gi(n)≡bi (mod q)

1 ≪ x

qM(log x)1/3

uniformly in squarefree q ≤ (log x)K and in residues (b1, . . . , bM) mod q.

The following analogue of (5.2) will be useful for this purpose: for each r ∈ {0, 1, . . . ,M − 1},
we have

(6.2) #V2(M−r),M−r

(
q; (wi)

M−r
i=1

)
≤ λω(q)φ(q)

2(M−r)

qM−r

uniformly for squarefree q > 1 and in residue classes (w1, . . . , wM−r) mod q, for some constant

λ := λ(Ĝ) > 1. It suffices to show this bound for r = 0 for then it may be applied with M − r
playing the role of M (recalling that {G′

i}M−r
i=1 are Q-linearly independent for any such r).

As in Proposition 3.2, we let C := C(Ĝ) be a constant exceeding max{C0(Ĝ), (2D)2D+4}, with
C0(Ĝ) defined in (2.2). Then for all ℓ ≤ C(Ĝ), we have trivially

(6.3) #V2M,M

(
ℓ; (wi)

M
i=1

)
≤ φ(ℓ)2M ≤ λ1

φ(ℓ)2M

ℓM

by fixing λ1 := λ1(Ĝ) > C(Ĝ)M .

Now consider a prime ℓ > C(Ĝ). By orthogonality we can write, as in (3.6),

#V2M,M

(
ℓ; (wi)

M
i=1

)
=

φ(ℓ)2M

ℓM

1 +
1

φ(ℓ)2M

∑
(r1,...,rM )̸≡(0,...,0) mod ℓ

e

(
−1

ℓ

M∑
i=1

riwi

)
(Zℓ; r1,...,rM )2M

 ,

where Zℓ; r1,...,rM :=
∑

v mod ℓ

χ0,ℓ(v)e

(
1
ℓ

M∑
i=1

riGi(v)

)
. Since ℓ > C(Ĝ) > C0(Ĝ), the polynomials

{G′
i}Mi=1 must be Fℓ-linearly independent, so that for each (r1, . . . , rM) ̸≡ (0, . . . , 0) mod ℓ, the
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polynomial
∑M

i=1 riGi(T ) does not reduce to a constant mod ℓ. As such, the Weil bound
(Proposition 3.3) yields |Zℓ; r1,...,rM | ≤ Dℓ1/2, leading to

(6.4) #V2M,M

(
ℓ; (wi)

M
i=1

)
=

φ(ℓ)2M

ℓM

{
1 +O

(
ℓM

(Dℓ1/2)2M

φ(ℓ)2M

)}
≤ λ2

φ(ℓ)2M

ℓM
,

for some constant λ2 := λ2(Ĝ) > C(Ĝ)M . Finally, we choose λ := max{λ1, λ2} and write, for

any squarefree q > 1, #V2M,M

(
q; (wi)

M
i=1

)
=

∏
ℓ|q: ℓ≤C

#V2M,M

(
ℓ; (wi)

M
i=1

)
·
∏

ℓ|q: ℓ>C

#V2M,M

(
ℓ; (wi)

M
i=1

)
.

Combining (6.3) for all the prime divisors ℓ ≤ C with (6.4) for all the prime divisors ℓ > C,
we obtain the desired bound (6.2) for r = 0. As argued before, this also implies (6.2) for any
r ∈ {0, 1, . . . ,M − 1}.

Coming to the proof of (6.1), we write the count on the left hand side as

Σ1 + Σ2 + · · ·+ ΣM + Σ,

where

• Σ1 counts those n which are exactly divisible by at least 2M many distinct primes
exceeding q,

• For each r ∈ {1, . . . ,M − 1}, Σr+1 counts the n that are exactly divisible by either
2M − 2r many or by 2M − 2r + 1 many distinct primes exceeding q, and

• Σ counts the remaining n, namely, those that are exactly divisible by at most one prime
exceeding q.

Bounding Σ1: Any n counted in Σ1 can be written in the form mP2M · · ·P1, where P1 :=
P (n) > z, q < P2M < · · · < P1, PJ(m) ≤ y and gcd(m,P2M · · ·P1) = 1. As such, the
congruences gi(n) ≡ bi (mod q) force (P1, . . . , P2M) ≡ v̂ mod q for some v̂ := (v1, . . . , v2M) ∈
V2M,M

(
q; (bi − gi(m))Mi=1

)
. Given m and v̂, the arguments in the previous section show that

the number of possible P1, . . . , P2M satisfying (P1, . . . , P2M) ≡ v̂ mod q is

≪ x(log2 x)
O(1)

φ(q)2Mm log x
.

Consequently,

Σ1 ≪
x(log2 x)

O(1)

log x

∑
m≤x

PJ (m)≤y

1

m
·
#V2M,M

(
q; (bi − gi(m))Mi=1

)
φ(q)2M

.

Using (6.2) to bound the cardinality #V2M,M

(
q; (bi − gi(m))Mi=1

)
in conjunction with (4.2) to

bound the resulting sum on m, we obtain

Σ1 ≪ λω(q)x(log2 x)
O(1)

qM(log x)1/2
exp

(
O
(
(log3 x)

2
))

≪ x

qM(log x)1/3
,

showing the desired bound for Σ1.
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Bounding Σ2, . . . ,ΣM : We start by making the following general observation: let E be a set

of primes and for a positive integer N , let Ω∗
E(N) :=

∑
pk∥n

p∈E, k>1

k denote the number of prime

divisors of N (counted with multiplicity) lying in the set E and appearing to an exponent
greater than 1 in the prime factorization of N . Then for any t ≥ 2, any positive integer
N having Ω∗

E(N) ≥ t is divisible by pα1
1 · · · pαs

s for some distinct primes p1, . . . , ps ∈ E, and
integers α1, . . . , αs ≥ 2 summing to t or t+1. More precisely, there exist positive integers s, m,
α1, . . . , αs, β1, . . . , βs and distinct primes p1, . . . , ps ∈ E such that α1, . . . , αs ≥ 2,

∑s
i=1 αi ∈

{t, t+ 1}, gcd(m, p1 · · · ps) = 1, N = mpβ1

1 · · · pβs
s and βi ≥ αi for all i ∈ [s].

This is seen by a simple induction on t, the case t = 2 being clear with (α1, . . . , αs) = (2) and
the case t = 3 being clear with (α1, . . . , αs) ∈ {(3), (2, 2)}. Consider any T ≥ 4, assume that
the result holds for all t < T , and let N be a positive integer with Ω∗

E(N) ≥ T . Let p1 be the
largest prime divisor of N lying in the set E and satisfying p21 | n, and let β1 := vp1(N) ≥ 2. If
β1 ≥ T − 1, then we are done with (α1, . . . , αs) being (T ) or (T − 1, 2), so suppose β1 ≤ T − 2.

Then the positive integer N ′ := N/pβ1

1 is not divisible by p1, and has Ω∗
E(N

′) ≥ T − β1 ≥
T − (T − 2) = 2. As such, by the inductive hypothesis applied to N ′ and t := T − β1, there
exist s,m, α2, . . . , αs, β2, . . . , βs and distinct primes p2, . . . , ps ∈ E satisfying α2, . . . , αs ≥ 2,∑s

i=2 αi ∈ {T − β1, T − β1 + 1}, gcd(m, p2 · · · ps) = 1, N ′ = mpβ2

2 · · · pβs
s and βi ≥ αi for all

i ∈ {2, . . . , s}. Since p1 ∤ N ′, we see that the primes p1, . . . , ps ∈ E must all be distinct and that

gcd(m, p1 · · · ps) = 1. Consequently, with α1 := β1 ≥ 2, we have N = pβ1

1 N ′ = mpβ1

1 pβ2

2 · · · pβs
s

with
∑s

i=1 αi ∈ {T, T + 1} and with βi ≥ αi for all i ∈ [s]. This completes the induction step,
establishing the claimed observation.

With this observation in hand, we note that for each r ∈ {1, . . . ,M − 1}, any n counted in the

sum Σr+1 is of the form mpβ1 · · · pβs
s P2M−2r · · ·P1 where all of the following hold:

(i) P1 := P (n) > z;

(ii) q < P2M−2r < · · · < P1;

(iii) p1, . . . , ps > q;

(iv) β1 ≥ α1, . . . , βs ≥ αs for some positive integers α1, . . . , αs at least 2 summing to either
max{2, 2r − 1} or to 2r;

(v) PJ(m) ≤ y;

(vi) m, p1, . . . , ps, P2M−2r, . . . , P1 are all pairwise coprime.

Indeed, any n counted in Σr+1 is exactly divisible by at least 2M −2r but at most 2M −2r+1
many primes (counted with multiplicity) exceeding q. Hence in the case r = 1 we have
Ω∗

>q(n) ≥ 2 while for r ∈ {2, . . . ,M − 1}, we have Ω∗
>q(n) ≥ 2M − (2M − 2r + 1) ≥

2r − 1, so altogether Ω∗
>q(n) ≥ max{2, 2r − 1}. Let P1, P2, . . . , P2M−2r be primes exceed-

ing q that exactly divide n, and satisfy P1 := P (n) > z and P2M−2r < · · · < P2 < P1.
Then with n′ := n/P1 · · ·P2M−2r, we still have Ω∗

>q(n
′) = Ω∗

>q(n) ≥ max{2, 2r − 1} and
gcd(n′, P1 · · ·P2M−2r) = 1. Invoking the above observation for N := n′, t := max{2, 2r − 1}
and E the set of primes exceeding q, we find that n′ = mpβ1 · · · pβs

s for some s ≥ 1, primes
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p1, . . . , ps > q and positive integers m,β1, . . . , βs such that m, p1, . . . , ps are pairwise coprime,
and β1 ≥ α1, . . . , βs ≥ αs for some positive integers α1, . . . , αs at least 2 summing to either
max{2, 2r−1} or 2r. (Here, we have recalled that in the case t = 2, the tuple (α1, . . . , αs) = (2)

was sufficient.) Altogether, we find that n = n′P1 · · ·P2M−2r = mpβ1 · · · pβs
s P1 · · ·P2M−2r, with

m, p1, . . . , ps, β1, . . . , βs, P1, . . . , P2M−2r satisfying the conditions (i)-(vi).

Consequently, gi(n) = gi(mpβ1

1 · · · pβs
s )+

∑2M−2r
j=1 Gi(Pj), and the conditions gi(n) ≡ bi (mod q)

for i ∈ [M − r] force (P1, . . . , P2M−2r) ≡ v̂ mod q for some element v̂ := (v1, . . . , v2M−2r) of

the set V2M−2r,M−r

(
q; (bi − gi(mpβ1 · · · pβs

s ))M−r
i=1

)
. Given m, s, α1, . . . , αs, p1, . . . , ps, β1, . . . , βs

and v̂, the arguments in the previous section show that the number of possible P1, . . . , P2M−2r

satisfying (P1, . . . , P2M−2r) ≡ v̂ mod q is

≪ x(log2 x)
O(1)

φ(q)2M−2rmpβ1

1 · · · pβs
s log x

.

Using (6.2) to bound the cardinality of the set V2M−2r,M−r

(
q; (bi − gi(mpβ1 · · · pβs

s ))M−r
i=1

)
, we

find that

Σr+1 ≪ λω(q)x(log2 x)
O(1)

qM−r log x

∑
m≤x

PJ (m)≤y

1

m

∑
s≥1; α1,...,αs≥2

α1+···+αs∈{2r−1,2r}

∑
p1,...,ps>q

β1≥α1,...,βs≥αs

1

pβ1

1 · · · pβs
s

.

Now, the sum on p1, . . . , ps, β1, . . . , βs is no more than

s∏
i=1

∑
pi>q

∑
βi≥αi

1

pβi

i

≪
s∏

i=1

∑
pi>q

1

pαi
i

≪ 1

qα1+···+αs−s
.

In addition since s ≥ 1 and
∑s

i=1 αi ≥ 2r − 1 and each αi ≥ 2, we find that
∑s

i=1 αi − s ≥ r:
indeed, from the bound

∑s
i=1 αi − s ≥ 2s − s = s ≥ 1, it remains to only see that for r ≥ 2,

we have
∑s

i=1 αi − s ≥ max{s, 2r − 1− s} ≥ r. Collecting estimates, we obtain

Σr+1 ≪ λω(q)x(log2 x)
O(1)

qM log x

∑
m≤x

PJ (m)≤y

1

m

∑
s≥1; α1,...,αs≥2

α1+···+αs∈{2r−1,2r}

1.

But since there are O(1) many possible s ≥ 1 and tuples (α1, . . . , αs) of positive integers
summing to 2r − 1 or to 2r, this automatically leads to

Σr+1 ≪ λω(q)x(log2 x)
O(1)

qM log x

∑
m≤x

PJ (m)≤y

1

m
.

As a consequence, (4.2) yields

Σr+1 ≪
λω(q)x

qM(log x)1/2
exp

(
O
(
(log3 x)

2
))

≪ x

qM(log x)1/3
,

yielding the desired bound for all of Σ2, . . . ,ΣM .

Bounding Σ: Any n counted in Σ has 2M many prime factors (counted with multiplicity)
exceeding q, out of which at most one of them can exactly divide n. Hence Ω∗

>q(n) ≥ 2M − 1,
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and by the same argument as given above, any n counted in Σ can be expressed in the
form mpβ1

1 · · · pβs
s P , where P := P (n) > z, p1, . . . , ps > q are primes, PJ(m) ≤ y, and

β1 ≥ α1, . . . , βs ≥ αs for some positive integers α1, . . . , αs at least 2 summing to either
2M − 1 or 2M . Given m, s, α1, . . . , αs, p1, . . . , ps, β1, . . . , βs, the number of possible P is
≪ x/mpβ1

1 · · · pβs
s log z. As above, we have

∑s
i=1 αi − s ≥ max{s, 2M − 1 − s} ≥ M , so

that the sum over s, α1, . . . , αs, p1, . . . , ps, β1, . . . , βs is O(q−M). Finally, using (4.2) to bound
the sum on m, we obtain Σ ≪ x/qM(log x)1/3.

This completes the proof of (6.1), and hence that of Theorem 1.3. □

6.1. Optimality in the input restrictions in Theorem 1.3: For any M ≥ 2, we construct
additive functions g1, . . . , gM showing that the restriction P2M(n) > q cannot be weakened to
P2M−3(n) > q in our range of q. For M = 2, the condition P2M−3(n) > q translates to
P (n) > q; by known estimates on smooth numbers ([20, Theorem 5.13 and Corollary 5.19,
Chapter III.5]), this latter condition may be ignored up to a negligible error, so the first
counterexample in subsection 4.1 suffices.

Now assume that M ≥ 3; consider additive functions g1, . . . , gM : N → Z defined by the
polynomials Gi(T ) := (T −1)i, and satisfying the conditions gi(p

2) := 0 for all primes p and all
i ∈ [M ]. As observed in subsection 4.1, the polynomials {G′

i}Mi=1 are Q-linearly independent,

and with C0(Ĝ) as in (2.2), we have q ∈ Q(g1,...,gM ) for all moduli q having P−(q) > C0(Ĝ).

We see that Gi(p) ≡ 0 (mod q) for all i and for all primes p ≡ 1 (mod q). Consequently,
if p1, . . . , pM−2, P are primes satisfying q < pM−2 < · · · < p1 < x1/(4M−8) < x1/3 < P ≤
x/(p1 · · · pM−2)

2 and P ≡ 1 (mod q), then the positive integer n := (p1 · · · pM−2)
2P is less than

or equal to x, has P2M−3(n) > q and satisfies the conditions gi(n) = Gi(P ) +
∑M−2

j=1 gi(p
2
j) ≡ 0

(mod q) for all i ∈ {1, . . . ,M}. By the Siegel–Walfisz Theorem, we find that∑
n≤x: P2M−3(n)>q
(∀i) gi(n)≡0 (mod q)

1 ≥
∑

q<pM−2<···<p1<x1/(4M−8)

∑
x1/3<P≤x/(p1···pM−2)

2

P≡1 (mod q)

1

≫
∑

q<pM−2<···<p1<x1/(4M−8)

(
x

φ(q)(p1 · · · pM−2)2 log x
+O(x1/3)

)

≫ x

q log x

∑
p1,...,pM−2 distinct

q<p1,...,pM−2<x1/(4M−8)

1

(p1 · · · pM−2)2

Ignoring the distinctness condition in the sum above incurs a total error

≪ x

q log x

∑
p1,p2,...,pM−3>q

1

p41p
2
2 · · · p2M−3

≪ x

q log x

∑
p>q

1

p4

∑
p>q

1

p2

M−4

≪ x

qM log x
.

On the other hand,∑
p1,...,pM−2∈(q,x1/(4M−8))

1

(p1 · · · pM−2)2
=

 ∑
q<p<x1/(4M−8)

1

p2

M−2

≫ 1

(q log q)M−2
.
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Collecting estimates, we obtain for all sufficiently large q,∑
n≤x: P2M−3(n)>q
(∀i) gi(n)≡0 (mod q)

1 ≫ x

qM−1 log x(log q)M−2
+O

(
x

qM log x

)
≫ x

qM−1 log x(log2 x)
M−2

,

which grows strictly faster than x/qM as soon as q > log x · (log2 x)M−1 (say). We conclude
that the condition P2M(n) > q cannot be replaced by P2M−3(n) > q for any M ≥ 2.

One might wonder whether one of the conditions P2M−1(n) > q or P2M−2(n) > q could possibly
suffice to restore uniformity in squarefree q ≤ (log x)K . In this direction, we now construct an
example showing that the condition P2M−2(n) > q is also insufficient for M = 2. Indeed, let
consider additive functions g1, g2 defined by the polynomials G1(T ) := T and G2(T ) := T 3, so

that {G′
1, G

′
2} are clearly Q-linearly independent. With C0(Ĝ) as usual, we have q ∈ Q(g1,g2)

for all q having P−(q) > C0(Ĝ).

However, if n is of the form P1P2 for distinct primes P1, P2 > y := exp((log x)1/2) satisfying
P2 ≡ −P1 (mod q), then P2(n) > y > q, while Gi(P1) + Gi(P2) ≡ 0 (mod q) for i ∈ {1, 2},
so that g1(n) ≡ g2(n) ≡ 0 (mod q). As such, for 2 < q ≤ (log x)K , a simpler version of the
arguments leading to (3.3) yields∑

n≤x: P2(n)>q
(∀i) gi(n)≡0 (mod q)

1 ≥
∑
v∈Uq

1

2!

∑
P1,P2>y

P1 ̸=P2, P1P2≤x
P1≡v, P2≡−v (mod q)

1

≫ 1

φ(q)

∑
P1,P2>y: P1P2≤x

1 +O(x exp(−C ′(log x)1/4)) ≫ x log2 x

q log x
,

(6.5)

where C ′ := C ′(K) > 0 is a constant, and the last bound above is a simple consequence
of Chebyshev’s and Mertens’ estimates. In particular, this shows that the tuple (0, 0) mod
q is overrepresented by (g1, g2) once q > log x/(log2 x)

1/2, showing failure of uniformity in
squarefree q after a very small threshold, under the restriction P2M−2(n) > q for M = 2.

It is to be noted that our arguments above go through for any two polynomials Gi(T ) :=
AiT

ki+Bi (i ∈ {1, 2}), for any two distinct odd positive integers ki, and any integers Ai ̸= 0 and
Bi. Indeed, the distinctness of k1 and k2 ensures that G′

1 and G′
2 are Q-linearly independent,

while their parity ensures that any two primes P1, P2 satisfying P2 ≡ −P1 (mod q) also satisfy
Gi(P1) +Gi(P2) ≡ 2Bi (mod q) for both i ∈ {1, 2}. As such, the above arguments show that
there are ≫ x log2 x/q log x many n ≤ x satisfying gi(n) ≡ 2Bi (mod q) for i ∈ {1, 2}. This
gives an infinite family of counterexamples showing that the condition P2M−2(n) > q is not
sufficient to restore uniformity in squarefree q ≤ (log x)K in the case M = 2.

In conclusion, this means that our restriction P2M(n) > q in Theorem 1.3 is at most “one step
away” from optimal, in the sense that it might still be possible to weaken it to P2M−1(n) > q.

7. Necessity of the linear independence hypothesis: Proof of Theorem 1.4

Recall that theQ-linear independence of {G′
i}M−1

i=1 is equivalent to that of {Gi−Gi(0)}M−1
i=1 ; like-

wise, the condition G′
M =

∑M−1
i=1 aiG

′
i is exactly equivalent to the condition GM(T )−GM(0) =
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i=1 ai(Gi(T )−Gi(0)) in the ringQ[T ]. We claim that the polynomials {Gi}Mi=1 areQ-linearly

independent. Indeed, suppose there exist integers β1, . . . , βM for which
∑M

i=1 βiGi(T ) = 0 in

Q[T ]. Since GM(T ) = GM(0) +
∑M−1

i=1 ai(Gi(T )−Gi(0)), we find that

(7.1)
M−1∑
i=1

(βi + βMai)Gi(T ) = βM

(
M−1∑
i=1

aiGi(0)−GM(0)

)
,

so that
∑M−1

i=1 (βi + βMai)(Gi(T ) − Gi(0)) = 0. Since {Gi(T ) − Gi(0)}M−1
i=1 are Q-linearly

independent, the last relation forces βi = −βMai for all i ∈ {1, . . . ,M − 1}, which by (7.1)
leads to

βM

(
M−1∑
i=1

aiGi(0)−GM(0)

)
= 0.

Now if βM ̸= 0, then the above relation forces
∑M−1

i=1 aiGi(0) = GM(0) contrary to hypothesis.
Hence, we must have βM = 0, forcing βi = −βMai = 0 for all i ∈ {1, . . . ,M − 1}. This shows
that {Gi}Mi=1 are indeed Q linearly independent.

As such by Corollary 2.5(i) and the discussion preceding it, there exists a constant C1(Ĝ) > 0

such that {Gi}Mi=1 are Fℓ-linearly independent for all ℓ > C1(Ĝ), and so Q ∈ Q(g1,...,gM ) for all

moduli Q > 1 having P−(Q) > C1(Ĝ). In addition, since {G′
i}M−1

i=1 are Q-linearly independent,
there exists (by (2.2)) a constant C0(G1, . . . , GM−1) > 0 such that {G′

i}M−1
i=1 are Fℓ-linearly

independent for any ℓ > C0(G1, . . . , GM−1).

We set CĜ to be any constant exceeding max{C1(Ĝ), 4M(32D)2D+4, C0(G1, . . . , GM−1)} and
henceforth consider moduli q having P−(q) > CĜ, so that q ∈ Q(g1,...,gM ). Given any R >

CĜ and integers {bi}M−1
i=1 , set bM := GM(0)R +

∑M−1
i=1 ai(bi − Gi(0)R). Then the relations∑R

j=1 Gi(vj) ≡ bi (mod q) for i ∈ {1, . . . ,M −1} also imply that
∑R

j=1GM(vj) ≡ bM (mod q).

As such, for any R distinct primes P1, . . . , PR, with (P1, . . . , PR) mod q lying in the set

V := VR,M−1

(
q; (bi)

M−1
i=1

)
=

{
(vj)

R
j=1 ∈ (Uq)

R : (∀i ∈ [M − 1])
R∑

j=1

Gi(vj) ≡ bi (mod q)

}
,

we have gi(P1 · · ·PR) ≡ bi (mod q) for all i ∈ [M ]. Letting y := exp((log x)1/2), a simpler
version of the arguments leading to (3.3) yields, for q ≤ (log x)K ,∑

n≤x: PR(n)>q
(∀i) gi(n)≡bi (mod q)

1 ≥
∑

(v1,...,vR)∈V

1

R!

∑
P1,...,PR>y
P1···PR≤x

P1,...,PR distinct
(∀j) Pj≡vj (mod q)

1

≫ #V

φ(q)R

∑
P1,...,PR>y
P1···PR≤x

P1,...,PR distinct

1 +O(x exp(−C ′(log x)δ/4))

≫ #V

φ(q)R

∑
P1,...,PR>y
P1···PR≤x

1 +O(x exp(−C ′(log x)δ/4))
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for some constant C ′ := C ′(K) > 0. A direct induction on R (involving Chebyshev’s estimate)
shows that the last sum above is ∑

n≤x: P−(n)>y
Ω(n)=R

1 ≫ x(log2 x)
R−1

log x
,

leading to ∑
n≤x: PR(n)>q

(∀i) gi(n)≡bi (mod q)

1 ≫ #V

φ(q)R
· x(log2 x)

R−1

log x
+O(x exp(−C ′(log x)δ/4)).

As such, to complete the proof of the theorem, it remains to show that

(7.2) #V = #VR,M−1

(
q; (bi)

M−1
i=1

)
≫ φ(q)R

qM−1
.

To show this, we argue as in the proof of the estimate (3.5): for each prime power ℓe ∥ q, we
write

#VR,M−1

(
ℓe; (bi)

M−1
i=1

)
=

φ(ℓe)R

ℓe(M−1)

1 +
1

φ(ℓe)R

∑
(r1,...,rM−1 )̸≡(0,...,0) mod ℓe

e

− 1

ℓe

M−1∑
i=1

ribi

 (Zℓe; r1,...,rM−1
)R

 ,

where Zℓe; r1,...,rM−1
:=

∑
v mod ℓe

χ0,ℓ(v)e

(
1
ℓe

M−1∑
i=1

riGi(v)

)
for each (r1, . . . , rM−1) ̸≡ (0, . . . , 0) mod

ℓe. Since (r1, . . . , rM−1) ̸≡ (0, . . . , 0) mod ℓe, we have gcd(ℓe, r1, . . . , rM−1) = ℓe−e0 for some
1 ≤ e0 ≤ e and |Zℓe; r1,...,rM−1

| ≤ Dℓe−e0/D (here it is important that since ℓ > CĜ, the

polynomials {G′
i}M−1

i=1 are Fℓ-linearly independent). We obtain

1

φ(ℓe)R

∑
(r1,...,rM−1 )̸≡(0,...,0) mod ℓe

|Zℓe; r1,...,rM−1
|R ≤ DRℓeR

φ(ℓe)R

∑
e0≥1

(
ℓM−1−R/D

)e0 ≤ 2(2D)R

ℓR/D−M+1
.

Since R/D −M ≥ R/(D + 2) and ℓ1/(2D+4) > (CĜ)
1/(2D+4) > 32D, this leads to

1

φ(ℓe)R

∑
(r1,...,rM−1 )̸≡(0,...,0) mod ℓe

|Zℓe; r1,...,rM−1
|R ≤ 2(2D)R

ℓR/(D+2)

≤ 2(2D)R

(32D)R
· 1

ℓR/(2D+4)
≤ 1

8RℓR/(2D+4)
≤ 1

8ℓ2
.

Hence, for each prime power ℓe ∥ q,

(7.3) #VR,M−1

(
ℓe; (bi)

M−1
i=1

)
≥ φ(ℓe)R

ℓe(M−1)

(
1− 1

8ℓ2

)
,
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and since
∏

ℓ|q
(
1− 1

8ℓ2

)
≥ 1− 1

8

∑
ℓ≥2

1
ℓ2

≥ 7
8
, we obtain by multiplying all the bounds (7.3),

#V =
∏
ℓe∥q

#VR,M−1

(
ℓe; (bi)

M−1
i=1

)
≥ 7

8
· φ(q)

R

qM−1
.

This shows (7.2), completing the proof of Theorem 1.4, and demonstrating the necessity of the
linear independence hypothesis in the generality of our setting. □
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