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Example (Pillal, Selberg): Q(n) = -k, k is equidistributed mod g
for each fixed q.
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Here we will focus on multiplicative functions f (i.e. if
f(mn) = f(m)f(n) for all m,n € Z* such that gcd(m, n) = 1.)

Previous notion: NOT the correct one to work with.

Example: Let p(n) denote Euler's totient; that is, p(n) = #(Z/nZ)*.
Fact (Landau): For a fixed g, ¢(n) =0 (mod q) for “almost all”
nezt:

%#{ngx: ©(n)=0 (mod qg)} -1 asx— oo.

Thus ¢(n) is not equidistributed mod g for ANY fixed g > 1.

For multiplicative functions f : ZT — 7Z, it makes sense to study their
distribution in the multiplicative group Ug mod q. So now our sample

space is {n : gcd(f(n),q) = 1}.
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Definition 2 (Narkiewicz).

Consider f : Z* — 7Z and g € Z". We say f is weakly
equidistributed or WUD modulo g if:

1. {n:gcd(f(n),q) = 1} is an infinite set,

2. for each a e U,

#{n<x:f(n)=a (modq)} R 1
#{n < x:gcd(f(n),q) =1}  ¢(q)’

as x — 0.
Example: For which g is ¢(n) weakly equidistributed mod g?
Theorem 1 (Narkiewicz, 1967).

@(n) is WUD mod q <= gcd(q,6) = 1.

e Consequence of a general criterion for weak equidistribution of a
single “polynomially-defined” multiplicative function to a fixed

modulus.

e ———————————————————————————————————————————————————————



Explicit numerical distributions of ¢(n) mod 5:
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10° | 0.27165 | 0.28003 | 0.23993 | 0.20837
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107 | 0.27073 | 0.27267 | 0.23999 | 0.21660
108 | 0.26998 | 0.27051 | 0.24032 | 0.21917
109 | 0.26924 | 0.26884 | 0.24063 | 0.22127

What fails mod 37 The numbers p — 1, for p # 3 prime, either fail to be
coprime to 3 or are “trapped” in the trivial subgroup of (Z/3Z)*.

Theorem 2 (Dence—Pomerance, 1998).
For r € {—1,1}, we have as x — oo,

#{n<x:p(n)=r (mod3)} ~ cx//logx,
where ¢; =~ 0.6109 and c_; ~ 0.3284.
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Narkiewicz, Rayner, Sliwa, Dobrowolski, Fomenko,....: Used this
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as x — 00.

Narkiewicz (1982): general criterion for deciding when a given
family f1,..., fx of “polynomially-defined” multiplicative functions are
jointly WUD to a fixed modulus.

Narkiewicz, Rayner, Sliwa, Dobrowolski, Fomenko,....: Used this
to give explicit weak equidistribution criteria for well-known functions
like o(n) =3 g, d, or(n) =3 4, d", as well as families like (i, o).

Theorem 3.
(¢, 0,02) are jointly WUD modulo any fixed q s.t. P~(q) > 23.
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Extending in a different direction...

In all of these results, g is fixed. What if q is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when ¢ is
allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix Ko > 0. The primes < x are
weakly equidistributed mod g, uniformly for g < (log x)*°. That is,

#lp<x:p=a (modq)}
Aaftip <x}

as x — oo, uniformly in g < (log x)X° and a € Uj,.

Question (made precise). Can we establish analogues of
Siegel-Walfisz with primes replaced by values of multiplicative
functions or their families?
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Joint work with Lebowitz-Lockard and Pollack (2021-’22):
Partial progress for polynomially—defined multiplicative functions.

Theorem 4 (Pollack-S.R., 2022).
Fix Ko > 0. Then @(n) is WUD mod q uniformly for q < (log x)ko
s.t. ged(q,6) = 1.

(w/ Lebowitz-Lockard: special case q = p, prime)

Shortcomings:

e Arguments restricted to a single multiplicative function and do not
generalize to families, so could not uniformize Narkiewicz's
1982-criterion.

e Even for a single multiplicative function, we are not able to recover
the full uniform version of Narkiewicz's 1967-criterion (for a single
function) as we need to impose several additional restrictions on
the modulus and on the multiplicative function.
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almost every aspect (in particular optimal in the range and
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Consequences for (¢, 0, 07)

Theorem 5 (S.R., 2023-24).

Fix e € (0,1). The family (¢, o,02) is jointly WUD uniformly modulo
q < (log x) having P~(q) > 23 and in a; € U,, where cq > 0 is a
small parameter depending on q.

Issue: (g, 0,03) are not jointly WUD uniformly to all g < (log x)°.
Inputs n without many large prime factors obstruct uniformity!
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Work-around: Restrict to inputs n having sufficiently many large
prime factors. Equidistribution is restored among these inputs.

Theorem 6 (S.R., 2023-'24).
Fix Ko > 0 and € € (0,1). We have
#{n < x: P13(n) > q,(p,0,02)(n) = (a1, a2,a3) (mod q)}

80(11)3#“ < x: P13(n) > q,gcd(pooa(n), q) = 1},

as x — oo, uniformly in q < (log x)Ko satisfying P~(q) > 23 and in
aj € Ug. For squarefree q, “13" can be replaced by “7".
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Some central themes behind the arguments:
1. Exploit a “mixing” phenomenon in U, (“quantitative ergodicity”
phenomenon for random walks in Ug).

e Heuristic: Fix F € Z[T] and consider g supported on large
primes. Choose uniformly at random uy, up, us, ... from the set
{ue Uy : F(u) € Uy}, and form the sequence of partial products

F(u), F(u1)F(u2), F(u1)F(u2)F(u3),....

Mixing in Ug: As J — oo, each unit mod g becomes roughly

equally likely to appear as one of the products Hle F(uj).

e For joint distribution of K multiplicative functions, work in U(’,< and
observe this for several polynomials simultaneously.

e Detect this “mixing” using methods from the “anatomy of
integers” (elementary/combinatorial number theory).
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2. Analytic number theory:
e Haldsz's Theorem + estimation of “pretentious distances”.

* Modification of the Landau—-Selberg—Delange method (mean values
of multiplicative functions).

Note: Direct use of mean value estimates is not enough!

3. Character sum machinery + Linear algebra over rings:
Extensions of the Weil bounds + Smith normal forms to bound
certain character sums.

4. Arithmetic + Algebraic Geometry:
Bounds on Fy-rational points of certain affine varieties over [Fy.

o Lang-Weil bound + study of regular sequences in Fy[X1, ..., X;].

et o e ————————————————————————————————————



Some of the General Main Results

Consider polynomially-defined multiplicative functions
fi,....,fx 1 ZT —7Z,and q € Z7.

Narkiewicz (1982): Complete description of the set

Q(h,....fx) ={qe€Z": f,..., fx jointly WUD mod g}



Some of the General Main Results

Consider polynomially-defined multiplicative functions
fi,....,fx 1 ZT —7Z,and q € Z7.

Narkiewicz (1982): Complete description of the set

Q(h,....fx) ={qe€Z": f,..., fx jointly WUD mod g}
Theorem 7 (S.R., 2023-24).

Under two technical hypotheses H; and H,, the functions fi,. .., fx
are jointly WUD uniformly modulo q € Q(f1, ..., fk) such that
q < (log x)%, for some parameter cq = c(q; fi,...,fx) > 0.



Some of the General Main Results

Consider polynomially-defined multiplicative functions
fi,....,fx 1 ZT —7Z,and q € Z7.

Narkiewicz (1982): Complete description of the set

Q(h,....fx) ={qe€Z": f,..., fx jointly WUD mod g}
Theorem 7 (S.R., 2023-24).

Under two technical hypotheses H; and H,, the functions fi,. .., fx
are jointly WUD uniformly modulo q € Q(f1, ..., fk) such that

q < (log x)%, for some parameter cq = c(q; fi,...,fx) > 0.
Optimality:

1. cq is optimal in most cases, hence so is the range of q.
2. Optimal in arithmetic restrictions on gq.
3. Hypotheses H; and Hy are both necessary.
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As for (¢, 0,02), we need to restrict our input sets to get complete
uniformity up to arbitrary powers of log x.
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As for (¢, 0,02), we need to restrict our input sets to get complete
uniformity up to arbitrary powers of log x.

Theorem 8 (S.R., 2023-24).
Fix Ko > 0. Under Hy and H», we have

#{n < x:Pgr(n)>gq, (Vi)fi(n)=a; (modq)}

K
~ ﬁ# {n < x: Pg(n)>gq, gcd(H fi(n), q) = 1}’

i=1

uniformly in q < (log x)* lying in Q(f1,...,fk) and in a; € U,.

Original statements contain the exhaustive casewise list of values of
R.

Optimality: Most of these R's are either exactly or nearly optimal,
ensuring joint WUD among as large a set of inputs as possible.
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Thank you for your attention.

A Very Happy Birthday to Prof.
Nathanson and Prof. Pomerance!
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