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Motivating problem: Study the distribution of arithmetic functions
among residue classes to integer moduli.

Definition 1.
Consider f : Z+ → Z and q ∈ Z+. We say f is uniformly distributed
(or equidistributed) modulo q if, for each a ∈ Z/qZ,

1

x
#{n ≤ x : f (n) ≡ a (mod q)} → 1

q
, as x → ∞.

Example: f (n) = n is equidistributed mod q for every q.

Example (Pillai, Selberg): Ω(n) =
∑

pk∥n k is equidistributed mod q
for each fixed q.
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Here we will focus on multiplicative functions f (i.e. if
f (mn) = f (m)f (n) for all m, n ∈ Z+ such that gcd(m, n) = 1.)

Previous notion: NOT the correct one to work with.

Example: Let φ(n) denote Euler’s totient; that is, φ(n) = #(Z/nZ)×.

Fact (Landau): For a fixed q, φ(n) ≡ 0 (mod q) for “almost all”
n ∈ Z+:

1

x
#{n ≤ x : φ(n) ≡ 0 (mod q)} → 1 as x → ∞.

Thus φ(n) is not equidistributed mod q for ANY fixed q > 1.

For multiplicative functions f : Z+ → Z, it makes sense to study their
distribution in the multiplicative group Uq mod q. So now our sample
space is {n : gcd(f (n), q) = 1}.
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Definition 2 (Narkiewicz).

Consider f : Z+ → Z and q ∈ Z+. We say f is weakly
equidistributed or WUD modulo q if:

1. {n : gcd(f (n), q) = 1} is an infinite set,

2. for each a ∈ Uq,

#{n ≤ x : f (n) ≡ a (mod q)}
#{n ≤ x : gcd(f (n), q) = 1}

→ 1

φ(q)
,

as x → ∞.

Example: For which q is φ(n) weakly equidistributed mod q?

Theorem 1 (Narkiewicz, 1967).

φ(n) is WUD mod q ⇐⇒ gcd(q, 6) = 1.

• Consequence of a general criterion for weak equidistribution of a
single “polynomially-defined” multiplicative function to a fixed
modulus.
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Explicit numerical distributions of φ(n) mod 5:
For x ≥ 1 and r ∈ {1, 2, 3, 4} let

ρr (x) :=
#{n ≤ x : φ(n) ≡ r (mod 5)}
#{n ≤ x : gcd(φ(n), 5) = 1}

x ρ1(x) ρ2(x) ρ3(x) ρ4(x)

105 0.27165 0.28003 0.23993 0.20837
106 0.27157 0.27556 0.23979 0.21307
107 0.27073 0.27267 0.23999 0.21660
108 0.26998 0.27051 0.24032 0.21917
109 0.26924 0.26884 0.24063 0.22127

What fails mod 3? The numbers p − 1, for p ̸= 3 prime, either fail to be
coprime to 3 or are “trapped” in the trivial subgroup of (Z/3Z)×.
Theorem 2 (Dence–Pomerance, 1998).
For r ∈ {−1, 1}, we have as x → ∞,

#{n ≤ x : φ(n) ≡ r (mod 3)} ∼ crx/
√
log x ,

where c1 ≈ 0.6109 and c−1 ≈ 0.3284.
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Analogously, f1, · · · , fK : Z+ → Z are jointly weakly equidistributed
(or jointly WUD) modulo q ∈ Z+ if:

1. {n : gcd(
∏K

i=1 fi (n), q) = 1} is an infinite set,

2. for each (a1, . . . , aK ) ∈ UK
q ,

#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)}
#{n ≤ x : gcd(

∏K
i=1 fi (n), q) = 1}

→ 1

φ(q)K
,

as x → ∞.

Narkiewicz (1982): general criterion for deciding when a given
family f1, . . . , fK of “polynomially-defined” multiplicative functions are
jointly WUD to a fixed modulus.

Narkiewicz, Rayner, Śliwa, Dobrowolski, Fomenko,....: Used this
to give explicit weak equidistribution criteria for well-known functions
like σ(n) =

∑
d |n d , σr (n) =

∑
d |n d

r , as well as families like (φ, σ).

Theorem 3.
(φ, σ, σ2) are jointly WUD modulo any fixed q s.t. P−(q) > 23.

6 of 15



Analogously, f1, · · · , fK : Z+ → Z are jointly weakly equidistributed
(or jointly WUD) modulo q ∈ Z+ if:

1. {n : gcd(
∏K

i=1 fi (n), q) = 1} is an infinite set,

2. for each (a1, . . . , aK ) ∈ UK
q ,

#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)}
#{n ≤ x : gcd(

∏K
i=1 fi (n), q) = 1}

→ 1

φ(q)K
,

as x → ∞.

Narkiewicz (1982): general criterion for deciding when a given
family f1, . . . , fK of “polynomially-defined” multiplicative functions are
jointly WUD to a fixed modulus.
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Extending in a different direction...

In all of these results, q is fixed. What if q is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when q is
allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix K0 > 0. The primes ≤ x are
weakly equidistributed mod q, uniformly for q ≤ (log x)K0 . That is,

#{p ≤ x : p ≡ a (mod q)}
1

φ(q)#{p ≤ x}
→ 1

as x → ∞, uniformly in q ≤ (log x)K0 and a ∈ Uq.

Question (made precise). Can we establish analogues of
Siegel-Walfisz with primes replaced by values of multiplicative
functions or their families?
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Joint work with Lebowitz-Lockard and Pollack (2021-’22):
Partial progress for polynomially–defined multiplicative functions.

Theorem 4 (Pollack–S.R., 2022).

Fix K0 > 0. Then φ(n) is WUD mod q uniformly for q ≤ (log x)K0

s.t. gcd(q, 6) = 1.
(w/ Lebowitz-Lockard: special case q = p, prime)

Shortcomings:

• Arguments restricted to a single multiplicative function and do not
generalize to families, so could not uniformize Narkiewicz’s
1982-criterion.

• Even for a single multiplicative function, we are not able to recover
the full uniform version of Narkiewicz’s 1967-criterion (for a single
function) as we need to impose several additional restrictions on
the modulus and on the multiplicative function.
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Recent work (2023-’24): Removes all these limitations.

• Extended Narkiewicz’s results to a varying modulus q optimally in
almost every aspect (in particular optimal in the range and
arithmetic restrictions on q).

• Best possible (qualitative) analogues of the Siegel-Walfisz theorem
for families of polynomially–defined multiplicative functions.

Consequences for (φ, σ, σ2)

Theorem 5 (S.R., 2023-’24).

Fix ϵ ∈ (0, 1). The family (φ, σ, σ2) is jointly WUD uniformly modulo
q ≤ (log x)cq having P−(q) > 23 and in ai ∈ Uq, where cq > 0 is a
small parameter depending on q.

Issue: (φ, σ, σ2) are not jointly WUD uniformly to all q ≤ (log x)K0 .
Inputs n without many large prime factors obstruct uniformity!
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for families of polynomially–defined multiplicative functions.

Consequences for (φ, σ, σ2)

Theorem 5 (S.R., 2023-’24).

Fix ϵ ∈ (0, 1). The family (φ, σ, σ2) is jointly WUD uniformly modulo
q ≤ (log x)cq having P−(q) > 23 and in ai ∈ Uq, where cq > 0 is a
small parameter depending on q.

Issue: (φ, σ, σ2) are not jointly WUD uniformly to all q ≤ (log x)K0 .
Inputs n without many large prime factors obstruct uniformity!
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Extending uniformity to the Siegel–Walfisz range:

Work-around: Restrict to inputs n having sufficiently many large
prime factors. Equidistribution is restored among these inputs.

Theorem 6 (S.R., 2023-’24).

Fix K0 > 0 and ϵ ∈ (0, 1). We have

#{n ≤ x : P13(n) > q, (φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod q)}

∼ 1

φ(q)3
#{n ≤ x : P13(n) > q, gcd(φσσ2(n), q) = 1},

as x → ∞, uniformly in q ≤ (log x)K0 satisfying P−(q) > 23 and in
ai ∈ Uq. For squarefree q, “13” can be replaced by “7”.
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Some central themes behind the arguments:
1. Exploit a “mixing” phenomenon in Uq (“quantitative ergodicity”
phenomenon for random walks in Uq).

• Heuristic: Fix F ∈ Z[T ] and consider q supported on large
primes. Choose uniformly at random u1, u2, u3, . . . from the set
{u ∈ Uq : F (u) ∈ Uq}, and form the sequence of partial products

F (u1), F (u1)F (u2), F (u1)F (u2)F (u3), . . . .

Mixing in Uq: As J → ∞, each unit mod q becomes roughly

equally likely to appear as one of the products
∏J

j=1 F (uj).

• For joint distribution of K multiplicative functions, work in UK
q and

observe this for several polynomials simultaneously.

• Detect this “mixing” using methods from the “anatomy of
integers” (elementary/combinatorial number theory).
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2. Analytic number theory:

• Halász’s Theorem + estimation of “pretentious distances”.

• Modification of the Landau–Selberg–Delange method (mean values
of multiplicative functions).

Note: Direct use of mean value estimates is not enough!

3. Character sum machinery + Linear algebra over rings:
Extensions of the Weil bounds + Smith normal forms to bound
certain character sums.

4. Arithmetic + Algebraic Geometry:
Bounds on Fℓ-rational points of certain affine varieties over Fℓ.

• Lang-Weil bound + study of regular sequences in Fℓ[X1, . . . ,Xr ].
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Some of the General Main Results

Consider polynomially-defined multiplicative functions
f1, . . . , fK : Z+ → Z, and q ∈ Z+.

Narkiewicz (1982): Complete description of the set

Q(f1, . . . , fK ) := {q ∈ Z+ : f1, . . . , fK jointly WUD mod q}

Theorem 7 (S.R., 2023-’24).

Under two technical hypotheses H1 and H2, the functions f1, . . . , fK
are jointly WUD uniformly modulo q ∈ Q(f1, . . . , fK ) such that
q ≤ (log x)cq , for some parameter cq := c(q; f1, . . . , fK ) > 0.

Optimality:

1. cq is optimal in most cases, hence so is the range of q.

2. Optimal in arithmetic restrictions on q.

3. Hypotheses H1 and H2 are both necessary.
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As for (φ, σ, σ2), we need to restrict our input sets to get complete
uniformity up to arbitrary powers of log x .

Theorem 8 (S.R., 2023-’24).

Fix K0 > 0. Under H1 and H2, we have

#{n ≤ x : PR(n) > q, (∀i) fi (n) ≡ ai (mod q)}

∼ 1

φ(q)K
#

{
n ≤ x : PR(n) > q, gcd(

K∏
i=1

fi (n), q) = 1

}
,

uniformly in q ≤ (log x)K0 lying in Q(f1, . . . , fK ) and in ai ∈ Uq.

Original statements contain the exhaustive casewise list of values of
R.

Optimality: Most of these R’s are either exactly or nearly optimal,
ensuring joint WUD among as large a set of inputs as possible.
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Thank you for your attention.

A Very Happy Birthday to Prof.
Nathanson and Prof. Pomerance!
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