Joint distribution in residue classes of families of multiplicative functions

Akash Singha Roy, University of Georgia Partly based on joint work with Paul Pollack and Noah Lebowitz-Lockard

INTEGERS CONFERENCE 2025

May 14, 2025

Definition 1.

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is **uniformly distributed** (or **equidistributed**) **modulo** q if, for each $a \in \mathbb{Z}/q\mathbb{Z}$,

$$\frac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod q\}\} o \frac{1}{q},\quad \text{as } x o \infty.$$

Definition 1.

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is **uniformly distributed** (or **equidistributed**) **modulo** q if, for each $a \in \mathbb{Z}/q\mathbb{Z}$,

$$\frac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod q\}\}\to \frac{1}{q},\quad \text{as } x\to\infty.$$

Example: f(n) = n is equidistributed mod q for every q.

Definition 1.

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is **uniformly distributed** (or **equidistributed**) **modulo** q if, for each $a \in \mathbb{Z}/q\mathbb{Z}$,

$$\frac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod q\}\}\to \frac{1}{q},\quad \text{as } x\to\infty.$$

Example: f(n) = n is equidistributed mod q for every q.

Example (Pillai, Selberg): $\Omega(n) = \sum_{p^k || n} k$ is equidistributed mod q for each fixed q.

Previous notion: NOT the correct one to work with.

Previous notion: NOT the correct one to work with.

Example: Let $\varphi(n)$ denote Euler's totient; that is, $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Fact (Landau): For a fixed q, $\varphi(n) \equiv 0 \pmod{q}$ for "almost all" $n \in \mathbb{Z}^+$:

$$\frac{1}{x}\#\{n\leq x:\ \varphi(n)\equiv 0\pmod q\}\}\to 1\quad \text{ as } x\to\infty.$$

Previous notion: NOT the correct one to work with.

Example: Let $\varphi(n)$ denote Euler's totient; that is, $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Fact (Landau): For a fixed q, $\varphi(n) \equiv 0 \pmod{q}$ for "almost all" $n \in \mathbb{Z}^+$:

$$\frac{1}{x}\#\{n\leq x:\ \varphi(n)\equiv 0\pmod q\}\} o 1\quad \text{ as } x o\infty.$$

Thus $\varphi(n)$ is not equidistributed mod q for **ANY** fixed q > 1.

Previous notion: NOT the correct one to work with.

Example: Let $\varphi(n)$ denote Euler's totient; that is, $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Fact (Landau): For a fixed q, $\varphi(n) \equiv 0 \pmod{q}$ for "almost all" $n \in \mathbb{Z}^+$:

$$\frac{1}{x}\#\{n\leq x:\ \varphi(n)\equiv 0\pmod q\}\}\to 1\quad \text{ as } x\to\infty.$$

Thus $\varphi(n)$ is not equidistributed mod q for **ANY** fixed q > 1.

For multiplicative functions $f: \mathbb{Z}^+ \to \mathbb{Z}$, it makes sense to study their distribution in the multiplicative group $U_q \mod q$. So now our sample space is $\{n: \gcd(f(n),q)=1\}$.

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is weakly equidistributed or WUD modulo q if:

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is weakly equidistributed or WUD modulo q if:

1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is weakly equidistributed or WUD modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is weakly equidistributed or WUD modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Example: For which q is $\varphi(n)$ weakly equidistributed mod q?

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is weakly equidistributed or WUD modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Example: For which q is $\varphi(n)$ weakly equidistributed mod q?

Theorem 1 (Narkiewicz, 1967).

$$\varphi(n)$$
 is WUD mod $q \iff \gcd(q,6) = 1$.

Consider $f: \mathbb{Z}^+ \to \mathbb{Z}$ and $q \in \mathbb{Z}^+$. We say f is weakly equidistributed or WUD modulo q if:

- 1. $\{n : \gcd(f(n), q) = 1\}$ is an infinite set,
- 2. for each $a \in U_q$,

$$\frac{\#\{n \le x : f(n) \equiv a \pmod{q}\}}{\#\{n \le x : \gcd(f(n), q) = 1\}} \to \frac{1}{\varphi(q)},$$

as $x \to \infty$.

Example: For which q is $\varphi(n)$ weakly equidistributed mod q?

Theorem 1 (Narkiewicz, 1967).

$$\varphi(n)$$
 is WUD mod $q \iff \gcd(q,6) = 1$.

 Consequence of a general criterion for weak equidistribution of a single "polynomially-defined" multiplicative function to a fixed modulus.

Explicit numerical distributions of $\varphi(n)$ mod 5: For $x \ge 1$ and $r \in \{1, 2, 3, 4\}$ let

$$\rho_r(x) := \frac{\#\{n \le x : \varphi(n) \equiv r \pmod{5}\}}{\#\{n \le x : \gcd(\varphi(n), 5) = 1\}}$$

X	$\rho_1(x)$	$\rho_2(x)$	$\rho_3(x)$	$\rho_4(x)$
10 ⁵	0.27165	0.28003	0.23993	0.20837
10^{6}	0.27157	0.27556	0.23979	0.21307
10^{7}	0.27073	0.27267	0.23999	0.21660
10^{8}	0.26998	0.27051	0.24032	0.21917
10^{9}	0.26924	0.26884	0.24063	0.22127

Explicit numerical distributions of $\varphi(n)$ mod 5: For x > 1 and $r \in \{1, 2, 3, 4\}$ let

$$\rho_r(x) := \frac{\#\{n \le x : \varphi(n) \equiv r \pmod{5}\}}{\#\{n \le x : \gcd(\varphi(n), 5) = 1\}}$$

X	$\rho_1(x)$	$\rho_2(x)$	$\rho_3(x)$	$\rho_4(x)$
10 ⁵	0.27165	0.28003	0.23993	0.20837
10^{6}	0.27157	0.27556	0.23979	0.21307
10^{7}	0.27073	0.27267	0.23999	0.21660
10^{8}	0.26998	0.27051	0.24032	0.21917
10^{9}	0.26924	0.26884	0.24063	0.22127

What fails mod 3? The numbers p-1, for $p \neq 3$ prime, either fail to be coprime to 3 or are "trapped" in the trivial subgroup of $(\mathbb{Z}/3\mathbb{Z})^{\times}$.

Explicit numerical distributions of $\varphi(n)$ mod 5:

For
$$x \ge 1$$
 and $r \in \{1, 2, 3, 4\}$ let

$$\rho_r(x) := \frac{\#\{n \le x : \varphi(n) \equiv r \pmod{5}\}}{\#\{n \le x : \gcd(\varphi(n), 5) = 1\}}$$

X	$\rho_1(x)$	$\rho_2(x)$	$\rho_3(x)$	$\rho_4(x)$
10 ⁵	0.27165	0.28003	0.23993	0.20837
10^{6}	0.27157	0.27556	0.23979	0.21307
10^{7}	0.27073	0.27267	0.23999	0.21660
10^{8}	0.26998	0.27051	0.24032	0.21917
10^{9}	0.26924	0.26884	0.24063	0.22127

What fails mod 3? The numbers p-1, for $p \neq 3$ prime, either fail to be coprime to 3 or are "trapped" in the trivial subgroup of $(\mathbb{Z}/3\mathbb{Z})^{\times}$.

Theorem 2 (Dence-Pomerance, 1998).

For $r \in \{-1, 1\}$, we have as $x \to \infty$,

$$\#\{n \le x : \varphi(n) \equiv r \pmod{3}\} \sim c_r x / \sqrt{\log x},$$

where $c_1 \approx 0.6109$ and $c_{-1} \approx 0.3284$.

1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,

- 1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,
- 2. for each $(a_1, \ldots, a_K) \in U_q^K$,

$$\frac{\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}}{\#\{n \leq x : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}} \to \frac{1}{\varphi(q)^K},$$

as $x \to \infty$.

- 1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,
- 2. for each $(a_1,\ldots,a_K)\in U_q^K$,

$$\frac{\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}}{\#\{n \leq x : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}} \to \frac{1}{\varphi(q)^K},$$

as $x \to \infty$.

Narkiewicz (1982): general criterion for deciding when a given family f_1, \ldots, f_K of "polynomially-defined" multiplicative functions are jointly WUD to a fixed modulus.

- 1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,
- 2. for each $(a_1,\ldots,a_K)\in U_q^K$,

$$\frac{\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}}{\#\{n \leq x : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}} \to \frac{1}{\varphi(q)^K},$$

as $x \to \infty$.

Narkiewicz (1982): general criterion for deciding when a given family f_1, \ldots, f_K of "polynomially-defined" multiplicative functions are jointly WUD to a fixed modulus.

Narkiewicz, Rayner, Śliwa, Dobrowolski, Fomenko,...: Used this to give explicit weak equidistribution criteria for well-known functions like $\sigma(n) = \sum_{d|n} d$, $\sigma_r(n) = \sum_{d|n} d^r$, as well as families like (φ, σ) .

- 1. $\{n : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}$ is an infinite set,
- 2. for each $(a_1,\ldots,a_K)\in U_q^K$,

$$\frac{\#\{n \leq x : (\forall i) \ f_i(n) \equiv a_i \pmod{q}\}}{\#\{n \leq x : \gcd(\prod_{i=1}^K f_i(n), q) = 1\}} \to \frac{1}{\varphi(q)^K},$$

as $x \to \infty$.

Narkiewicz (1982): general criterion for deciding when a given family f_1, \ldots, f_K of "polynomially-defined" multiplicative functions are jointly WUD to a fixed modulus.

Narkiewicz, Rayner, Śliwa, Dobrowolski, Fomenko,...: Used this to give explicit weak equidistribution criteria for well-known functions like $\sigma(n) = \sum_{d|n} d$, $\sigma_r(n) = \sum_{d|n} d^r$, as well as families like (φ, σ) .

Theorem 3.

 $(\varphi, \sigma, \sigma_2)$ are jointly WUD modulo any fixed q s.t. $P^-(q) > 23$.

In all of these results, q is fixed. What if q is allowed to vary?

In all of these results, q is fixed. What if q is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when q is allowed to vary with our stopping point x?

In all of these results, q is fixed. What if q is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when q is allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix $K_0 > 0$. The primes $\leq x$ are weakly equidistributed mod q, uniformly for $q \leq (\log x)^{K_0}$. That is,

$$\frac{\#\{p \le x : p \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)}\#\{p \le x\}} \to 1$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ and $a \in U_q$.

In all of these results, q is fixed. What if q is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when q is allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix $K_0 > 0$. The primes $\leq x$ are weakly equidistributed mod q, uniformly for $q \leq (\log x)^{K_0}$. That is,

$$\frac{\#\{p \le x : p \equiv a \pmod{q}\}}{\frac{1}{\varphi(q)} \#\{p \le x\}} \to 1$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ and $a \in U_q$.

Question (made precise). Can we establish analogues of Siegel-Walfisz with primes replaced by values of multiplicative functions or their families?

Partial progress for polynomially-defined multiplicative functions.

Partial progress for polynomially-defined multiplicative functions.

Theorem 4 (Pollack–S.R., 2022).

Fix $K_0 > 0$. Then $\varphi(n)$ is WUD mod q uniformly for $q \le (\log x)^{K_0}$ s.t. gcd(q, 6) = 1.

(w/Lebowitz-Lockard: special case q = p, prime)

Partial progress for polynomially-defined multiplicative functions.

Theorem 4 (Pollack–S.R., 2022).

```
Fix K_0 > 0. Then \varphi(n) is WUD mod q uniformly for q \le (\log x)^{K_0} s.t. gcd(q, 6) = 1. (w/ Lebowitz-Lockard: special case q = p, prime)
```

Shortcomings:

 Arguments restricted to a single multiplicative function and do not generalize to families, so could not uniformize Narkiewicz's 1982-criterion.

Partial progress for polynomially-defined multiplicative functions.

Theorem 4 (Pollack–S.R., 2022).

Fix $K_0 > 0$. Then $\varphi(n)$ is WUD mod q uniformly for $q \le (\log x)^{K_0}$ s.t. $\gcd(q, 6) = 1$. (w/ Lebowitz-Lockard: special case q = p, prime)

Shortcomings:

- Arguments restricted to a single multiplicative function and do not generalize to families, so could not uniformize Narkiewicz's 1982-criterion.
- Even for a single multiplicative function, we are not able to recover the full uniform version of Narkiewicz's 1967-criterion (for a single function) as we need to impose several additional restrictions on the modulus and on the multiplicative function.

• Extended Narkiewicz's results to a varying modulus q optimally in almost every aspect (in particular optimal in the range and arithmetic restrictions on q).

- Extended Narkiewicz's results to a varying modulus q optimally in almost every aspect (in particular optimal in the range and arithmetic restrictions on q).
- Best possible (qualitative) analogues of the Siegel-Walfisz theorem for families of polynomially-defined multiplicative functions.

- Extended Narkiewicz's results to a varying modulus q optimally in almost every aspect (in particular optimal in the range and arithmetic restrictions on q).
- Best possible (qualitative) analogues of the Siegel-Walfisz theorem for families of polynomially-defined multiplicative functions.

Consequences for $(\varphi, \sigma, \sigma_2)$

Theorem 5 (S.R., 2023-'24).

Fix $\epsilon \in (0,1)$. The family $(\varphi, \sigma, \sigma_2)$ is jointly WUD uniformly modulo $q \leq (\log x)^{c_q}$ having $P^-(q) > 23$ and in $a_i \in U_q$, where $c_q > 0$ is a small parameter depending on q.

- Extended Narkiewicz's results to a varying modulus q optimally in almost every aspect (in particular optimal in the range and arithmetic restrictions on q).
- Best possible (qualitative) analogues of the Siegel-Walfisz theorem for families of polynomially-defined multiplicative functions.

Consequences for $(\varphi, \sigma, \sigma_2)$

Theorem 5 (S.R., 2023-'24).

Fix $\epsilon \in (0,1)$. The family $(\varphi, \sigma, \sigma_2)$ is jointly WUD uniformly modulo $q \leq (\log x)^{c_q}$ having $P^-(q) > 23$ and in $a_i \in U_q$, where $c_q > 0$ is a small parameter depending on q.

Issue: $(\varphi, \sigma, \sigma_2)$ are **not** jointly WUD uniformly to all $q \leq (\log x)^{K_0}$. Inputs n without many large prime factors obstruct uniformity!

Extending uniformity to the Siegel–Walfisz range:

Work-around: Restrict to inputs n having sufficiently many large prime factors. Equidistribution is restored among these inputs.

Extending uniformity to the Siegel-Walfisz range:

Work-around: Restrict to inputs n having sufficiently many large prime factors. Equidistribution is restored among these inputs.

Theorem 6 (S.R., 2023-'24).

Fix $K_0 > 0$ and $\epsilon \in (0,1)$. We have

$$\begin{split} \#\{n \leq x : P_{13}(n) > q, (\varphi, \sigma, \sigma_2)(n) &\equiv (a_1, a_2, a_3) \pmod{q}\} \\ &\sim \frac{1}{\varphi(q)^3} \#\{n \leq x : P_{13}(n) > q, \gcd(\varphi \sigma \sigma_2(n), q) = 1\}, \end{split}$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ satisfying $P^-(q) > 23$ and in $a_i \in U_a$.

Extending uniformity to the Siegel-Walfisz range:

Work-around: Restrict to inputs n having sufficiently many large prime factors. Equidistribution is restored among these inputs.

Theorem 6 (S.R., 2023-'24).

Fix $K_0 > 0$ and $\epsilon \in (0,1)$. We have

$$\begin{split} \#\{n \leq x : P_{13}(n) > q, (\varphi, \sigma, \sigma_2)(n) &\equiv (a_1, a_2, a_3) \pmod{q}\} \\ &\sim \frac{1}{\varphi(q)^3} \#\{n \leq x : P_{13}(n) > q, \gcd(\varphi \sigma \sigma_2(n), q) = 1\}, \end{split}$$

as $x \to \infty$, uniformly in $q \le (\log x)^{K_0}$ satisfying $P^-(q) > 23$ and in $a_i \in U_q$. For squarefree q, "13" can be replaced by "7".

1. Exploit a "mixing" phenomenon in U_q ("quantitative ergodicity" phenomenon for random walks in U_q).

- **1.** Exploit a "mixing" phenomenon in U_q ("quantitative ergodicity" phenomenon for random walks in U_q).
- Heuristic: Fix $F \in \mathbb{Z}[T]$ and consider q supported on large primes.

- **1.** Exploit a "mixing" phenomenon in U_q ("quantitative ergodicity" phenomenon for random walks in U_q).
- Heuristic: Fix $F \in \mathbb{Z}[T]$ and consider q supported on large primes. Choose uniformly at random u_1, u_2, u_3, \ldots from the set $\{u \in U_q : F(u) \in U_q\}$,

- **1.** Exploit a "mixing" phenomenon in U_q ("quantitative ergodicity" phenomenon for random walks in U_q).
- Heuristic: Fix $F \in \mathbb{Z}[T]$ and consider q supported on large primes. Choose uniformly at random u_1, u_2, u_3, \ldots from the set $\{u \in U_q : F(u) \in U_q\}$, and form the sequence of partial products

$$F(u_1), F(u_1)F(u_2), F(u_1)F(u_2)F(u_3), \ldots$$

- 1. Exploit a "mixing" phenomenon in U_q ("quantitative ergodicity" phenomenon for random walks in U_q).
- Heuristic: Fix $F \in \mathbb{Z}[T]$ and consider q supported on large primes. Choose uniformly at random u_1, u_2, u_3, \ldots from the set $\{u \in U_q : F(u) \in U_q\}$, and form the sequence of partial products

$$F(u_1), F(u_1)F(u_2), F(u_1)F(u_2)F(u_3), \ldots$$

Mixing in U_q : As $J \to \infty$, each unit mod q becomes roughly equally likely to appear as one of the products $\prod_{i=1}^J F(u_i)$.

- **1.** Exploit a "mixing" phenomenon in U_q ("quantitative ergodicity" phenomenon for random walks in U_q).
- Heuristic: Fix $F \in \mathbb{Z}[T]$ and consider q supported on large primes. Choose uniformly at random u_1, u_2, u_3, \ldots from the set $\{u \in U_q : F(u) \in U_q\}$, and form the sequence of partial products

$$F(u_1), F(u_1)F(u_2), F(u_1)F(u_2)F(u_3), \ldots$$

Mixing in U_q : As $J \to \infty$, each unit mod q becomes roughly equally likely to appear as one of the products $\prod_{i=1}^J F(u_i)$.

• For joint distribution of K multiplicative functions, work in U_q^K and observe this for several polynomials simultaneously.

- **1.** Exploit a "mixing" phenomenon in U_q ("quantitative ergodicity" phenomenon for random walks in U_q).
- Heuristic: Fix $F \in \mathbb{Z}[T]$ and consider q supported on large primes. Choose uniformly at random u_1, u_2, u_3, \ldots from the set $\{u \in U_q : F(u) \in U_q\}$, and form the sequence of partial products

$$F(u_1), F(u_1)F(u_2), F(u_1)F(u_2)F(u_3), \ldots$$

Mixing in U_q : As $J \to \infty$, each unit mod q becomes roughly equally likely to appear as one of the products $\prod_{i=1}^J F(u_i)$.

- For joint distribution of K multiplicative functions, work in U_q^K and observe this for several polynomials simultaneously.
- Detect this "mixing" using methods from the "anatomy of integers" (elementary/combinatorial number theory).

• Halász's Theorem + estimation of "pretentious distances".

- Halász's Theorem + estimation of "pretentious distances".
- Modification of the Landau–Selberg–Delange method (mean values of multiplicative functions).

Note: Direct use of mean value estimates is not enough!

- Halász's Theorem + estimation of "pretentious distances".
- Modification of the Landau–Selberg–Delange method (mean values of multiplicative functions).

Note: Direct use of mean value estimates is not enough!

3. Character sum machinery + Linear algebra over rings: Extensions of the Weil bounds + Smith normal forms to bound certain character sums.

- Halász's Theorem + estimation of "pretentious distances".
- Modification of the Landau–Selberg–Delange method (mean values of multiplicative functions).

Note: Direct use of mean value estimates is not enough!

3. Character sum machinery + Linear algebra over rings: Extensions of the Weil bounds + Smith normal forms to bound certain character sums.

4. Arithmetic + Algebraic Geometry:

Bounds on \mathbb{F}_{ℓ} -rational points of certain affine varieties over $\overline{\mathbb{F}}_{\ell}$.

- Halász's Theorem + estimation of "pretentious distances".
- Modification of the Landau–Selberg–Delange method (mean values of multiplicative functions).

Note: Direct use of mean value estimates is not enough!

3. Character sum machinery + Linear algebra over rings: Extensions of the Weil bounds + Smith normal forms to bound certain character sums.

4. Arithmetic + Algebraic Geometry:

Bounds on \mathbb{F}_{ℓ} -rational points of certain affine varieties over $\overline{\mathbb{F}}_{\ell}$.

• Lang-Weil bound + study of regular sequences in $\overline{\mathbb{F}}_{\ell}[X_1,\ldots,X_r]$.

Some of the General Main Results

Consider polynomially-defined multiplicative functions $f_1, \ldots, f_K : \mathbb{Z}^+ \to \mathbb{Z}$, and $g \in \mathbb{Z}^+$.

Narkiewicz (1982): Complete description of the set

$$\mathcal{Q}(f_1,\ldots,f_K)\coloneqq\{q\in\mathbb{Z}^+:\ f_1,\ldots,f_K\ \text{jointly WUD mod }q\}$$

Some of the General Main Results

Consider polynomially-defined multiplicative functions $f_1, \ldots, f_K : \mathbb{Z}^+ \to \mathbb{Z}$, and $q \in \mathbb{Z}^+$.

Narkiewicz (1982): Complete description of the set

$$\mathcal{Q}(f_1,\ldots,f_K)\coloneqq\{q\in\mathbb{Z}^+:\ f_1,\ldots,f_K\ \text{jointly WUD mod }q\}$$
Theorem 7 (S.R., 2023-'24).

Under two technical hypotheses H_1 and H_2 , the functions f_1, \ldots, f_K are jointly WUD uniformly modulo $q \in \mathcal{Q}(f_1, \ldots, f_K)$ such that $q \leq (\log x)^{c_q}$, for some parameter $c_q \coloneqq c(q; f_1, \ldots, f_K) > 0$.

Some of the General Main Results

Consider polynomially-defined multiplicative functions $f_1, \ldots, f_K : \mathbb{Z}^+ \to \mathbb{Z}$, and $q \in \mathbb{Z}^+$.

Narkiewicz (1982): Complete description of the set

$$\mathcal{Q}(f_1,\ldots,f_K)\coloneqq\{q\in\mathbb{Z}^+:\ f_1,\ldots,f_K\ \text{jointly WUD mod }q\}$$
Theorem 7 (S.R., 2023-'24).

Under two technical hypotheses H_1 and H_2 , the functions f_1, \ldots, f_K are jointly WUD uniformly modulo $q \in \mathcal{Q}(f_1, \ldots, f_K)$ such that $q \leq (\log x)^{c_q}$, for some parameter $c_q \coloneqq c(q; f_1, \ldots, f_K) > 0$.

Optimality:

- 1. c_q is optimal in most cases, hence so is the range of q.
- 2. Optimal in arithmetic restrictions on q.
- 3. Hypotheses H_1 and H_2 are both necessary.

As for $(\varphi, \sigma, \sigma_2)$, we need to restrict our input sets to get complete uniformity up to arbitrary powers of log x.

Theorem 8 (S.R., 2023-'24).

Fix $K_0 > 0$. Under H_1 and H_2 , we have

$$\begin{split} \#\{n \leq x : P_R(n) > q, & (\forall i) \ f_i(n) \equiv a_i \pmod{q}\} \\ \sim \frac{1}{\varphi(q)^K} \#\left\{n \leq x : P_R(n) > q, \ \gcd(\prod_{i=1}^K f_i(n), q) = 1\right\}, \end{split}$$

uniformly in $q \leq (\log x)^{K_0}$ lying in $Q(f_1, \ldots, f_K)$ and in $a_i \in U_q$.

As for $(\varphi, \sigma, \sigma_2)$, we need to restrict our input sets to get complete uniformity up to arbitrary powers of log x.

Theorem 8 (S.R., 2023-'24).

Fix $K_0 > 0$. Under H_1 and H_2 , we have

$$\begin{split} \#\{n \leq x : P_R(n) > q, & (\forall i) \ f_i(n) \equiv a_i \pmod{q}\} \\ \sim \frac{1}{\varphi(q)^K} \#\left\{n \leq x : P_R(n) > q, \ \gcd(\prod_{i=1}^K f_i(n), q) = 1\right\}, \end{split}$$

uniformly in $q \leq (\log x)^{K_0}$ lying in $\mathcal{Q}(f_1, \ldots, f_K)$ and in $a_i \in U_q$. Original statements contain the exhaustive casewise list of values of R. As for $(\varphi, \sigma, \sigma_2)$, we need to restrict our input sets to get complete uniformity up to arbitrary powers of $\log x$.

Theorem 8 (S.R., 2023-'24).

Fix $K_0 > 0$. Under H_1 and H_2 , we have

$$\begin{split} \#\{n \leq x : P_R(n) > q, & (\forall i) \ f_i(n) \equiv a_i \pmod{q}\} \\ \sim \frac{1}{\varphi(q)^K} \#\left\{n \leq x : P_R(n) > q, \ \gcd(\prod_{i=1}^K f_i(n), q) = 1\right\}, \end{split}$$

uniformly in $q \leq (\log x)^{K_0}$ lying in $\mathcal{Q}(f_1, \ldots, f_K)$ and in $a_i \in U_q$. Original statements contain the exhaustive casewise list of values of R.

Optimality: Most of these R's are either exactly or nearly optimal, ensuring joint WUD among as large a set of inputs as possible.

Thank you for your attention.

A Very Happy Birthday to Prof. Nathanson and Prof. Pomerance!