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Motivating problem: Study the distribution of arithmetic functions
among residue classes to integer moduli.

Definition 1.
Consider f : N → Z and q ∈ Z+. We say f is uniformly distributed
(or equidistributed) modulo q if, for each a ∈ Z/qZ,

1

x
#{n ≤ x : f (n) ≡ a (mod q)} → 1

q
, as x → ∞.

Example: f (n) = n is equidistributed mod q for every q.

Example (Pillai, Delange): Ω(n) =
∑

pk∥n k is equidistributed mod q
for each fixed q.
Note: For q = 2, this is equivalent to the (weak form of the) PNT.

But for multiplicative functions, this is NOT the correct notion to
consider. (Recall: f is multiplicative if f (mn) = f (m)f (n) for all
m, n ∈ Z+ such that gcd(m, n) = 1.)
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Let φ(n) denote Euler’s totient; that is, φ(n) = #(Z/nZ)×.

Fact: For a fixed q, φ(n) ≡ 0 (mod q) for “almost all” positive
integers n:

1

x
#{n ≤ x : φ(n) ≡ 0 (mod q)} → 1 as x → ∞.

This means that φ(n) is not uniformly distributed mod q for ANY
fixed q > 1.

For multiplicative functions f : N → Z, it makes sense to study their
distribution in the multiplicative group Uq mod q. So now our sample
space is {n : gcd(f (n), q) = 1}.
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Definition 2 (Narkiewicz).

Consider f : N → Z and q ∈ Z+. We say f is weakly uniformly
distributed (or weakly equidistributed or WUD) modulo q if:

1. {n : gcd(f (n), q) = 1} is an infinite set,

2. for each a ∈ Uq,

#{n ≤ x : f (n) ≡ a (mod q)}
#{n ≤ x : gcd(f (n), q) = 1}

→ 1

φ(q)
,

as x → ∞.

Example: For which q is φ(n) weakly equidistributed mod q?

Theorem 1 (Narkiewicz, 1967).

φ(n) is weakly equidistributed modulo q iff gcd(q, 6) = 1.

Consequence of general criterion for “polynomially-defined”
multiplicative functions.
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Explicit numerical distributions of φ(n) mod 5:
For x ≥ 1 and r ∈ {1, 2, 3, 4} let

ρr (x) :=
#{n ≤ x : φ(n) ≡ r (mod 5)}
#{n ≤ x : gcd(φ(n), 5) = 1}

x ρ1(x) ρ2(x) ρ3(x) ρ4(x)

105 0.27165 0.28003 0.23993 0.20837
106 0.27157 0.27556 0.23979 0.21307
107 0.27073 0.27267 0.23999 0.21660
108 0.26998 0.27051 0.24032 0.21917
109 0.26924 0.26884 0.24063 0.22127

What fails mod 3? The numbers p − 1, for p ̸= 3 prime, either fail to be
coprime to 3 or are “trapped” in the trivial subgroup of (Z/3Z)×.
Theorem 2 (Dence–Pomerance).
For r ∈ {−1, 1}, we have as x → ∞,

#{n ≤ x : φ(n) ≡ r (mod 3)} ∼ crx/
√
log x ,

where c1 ≈ 0.6109 and c−1 ≈ 0.3284.
(Jump back to slide 31)
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One can similarly define a family f1, · · · , fK : N → Z to be jointly
weakly equidistributed or (jointly WUD) modulo q ∈ Z+ if:

1. {n : gcd(
∏K

i=1 fi (n), q) = 1} is an infinite set,

2. for each (a1, . . . , aK ) ∈ UK
q ,

#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)}
#{n ≤ x : gcd(

∏K
i=1 fi (n), q) = 1}

→ 1

φ(q)K
,

as x → ∞.

Narkiewicz has a general criterion for deciding when a given family
f1, . . . , fK of “polynomially-defined” multiplicative functions are
jointly WUD to a given modulus.

A consequence of this: Let σ(n) =
∑

d |n d , σ2(n) =
∑

d |n d
2.

Theorem 3.
(φ, σ, σ2) are jointly WUD modulo any fixed q s.t. P−(q) > 23.

6 of 36



One can similarly define a family f1, · · · , fK : N → Z to be jointly
weakly equidistributed or (jointly WUD) modulo q ∈ Z+ if:

1. {n : gcd(
∏K

i=1 fi (n), q) = 1} is an infinite set,

2. for each (a1, . . . , aK ) ∈ UK
q ,

#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)}
#{n ≤ x : gcd(

∏K
i=1 fi (n), q) = 1}

→ 1

φ(q)K
,

as x → ∞.

Narkiewicz has a general criterion for deciding when a given family
f1, . . . , fK of “polynomially-defined” multiplicative functions are
jointly WUD to a given modulus.

A consequence of this: Let σ(n) =
∑

d |n d , σ2(n) =
∑

d |n d
2.

Theorem 3.
(φ, σ, σ2) are jointly WUD modulo any fixed q s.t. P−(q) > 23.

6 of 36



One can similarly define a family f1, · · · , fK : N → Z to be jointly
weakly equidistributed or (jointly WUD) modulo q ∈ Z+ if:

1. {n : gcd(
∏K

i=1 fi (n), q) = 1} is an infinite set,

2. for each (a1, . . . , aK ) ∈ UK
q ,

#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)}
#{n ≤ x : gcd(

∏K
i=1 fi (n), q) = 1}

→ 1

φ(q)K
,

as x → ∞.

Narkiewicz has a general criterion for deciding when a given family
f1, . . . , fK of “polynomially-defined” multiplicative functions are
jointly WUD to a given modulus.

A consequence of this: Let σ(n) =
∑

d |n d , σ2(n) =
∑

d |n d
2.

Theorem 3.
(φ, σ, σ2) are jointly WUD modulo any fixed q s.t. P−(q) > 23.

6 of 36



One can similarly define a family f1, · · · , fK : N → Z to be jointly
weakly equidistributed or (jointly WUD) modulo q ∈ Z+ if:

1. {n : gcd(
∏K

i=1 fi (n), q) = 1} is an infinite set,

2. for each (a1, . . . , aK ) ∈ UK
q ,

#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)}
#{n ≤ x : gcd(

∏K
i=1 fi (n), q) = 1}

→ 1

φ(q)K
,

as x → ∞.

Narkiewicz has a general criterion for deciding when a given family
f1, . . . , fK of “polynomially-defined” multiplicative functions are
jointly WUD to a given modulus.

A consequence of this: Let σ(n) =
∑

d |n d , σ2(n) =
∑

d |n d
2.

Theorem 3.
(φ, σ, σ2) are jointly WUD modulo any fixed q s.t. P−(q) > 23.

6 of 36



In all of these results, q is fixed. What if q is allowed to vary?

Question. Can we prove (weak) equidistribution theorems when q is
allowed to vary with our stopping point x?

Model (Siegel-Walfisz Theorem). Fix K0 > 0. The primes ≤ x are
weakly equidistributed mod q, uniformly for q ≤ (log x)K0 . That is,

#{p ≤ x : p ≡ a (mod q)}
1

φ(q)#{p ≤ x}
→ 1

as x → ∞, uniformly in q ≤ (log x)K0 and a ∈ Uq.

In other words, For any given ϵ > 0, there exists X (ϵ,K0) depending
only on ϵ and K0 s.t. the above ratio lies between 1− ϵ and 1+ ϵ for
all x > X (ϵ,K0), all q ≤ (log x)K0 and all coprime residues a mod q.

Question (made precise). Can we establish analogues of
Siegel-Walfisz with primes replaced by values of φ or (φ, σ, σ2)?
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Theorem 4 (Pollack, S. R., 2022).

Fix K0 > 0. As x → ∞,

#{n ≤ x : φ(n) ≡ a (mod q)}
1

φ(q)#{n ≤ x : gcd(φ(n), q) = 1}
→ 1,

uniformly for q ≤ (log x)K0 satisfying gcd(q, 6) = 1 and coprime
residues a mod q.

Merits: Our original results work for a single multiplicative function f

defined by a polynomial F at primes. Thus we are able to take the
first step towards extending Narkiewicz’s results to varying moduli q.

Shortcomings of this result:
• Several arguments are restricted to a single multiplicative function and

cannot be generalized to families.
• Even for a single multiplicative function, we are not able to recover a

uniform version of Narkiewicz’s general criterion as we need to impose
several additional restrictions on q and F .
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In recent work, these shortcomings have been addressed. The main results
of today’s talk are extensions of Narkiewicz’s general criterion for families of
“polynomially-defined” multiplicative functions that are optimal in the range
and arithmetic restrictions of q as well as in almost all other hypotheses.

Consequence for (φ, σ, σ2): φ(P) = P − 1, σ(P) = P +1, σ2(P) = P2 +1.

Theorem 5 (S. R., 2023).
Fix ϵ ∈ (0, 1). As x → ∞, we have

#{n ≤ x : (φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod q)}
1

φ(q)3#{n ≤ x : gcd(φσσ2(n), q) = 1}
→ 1,

uniformly in moduli q ≤ (log x)(1/2−ϵ)α(q) having P−(q) > 23 and in
coprime residue classes ai mod q, where

α(q) =
1

φ(q)
#{u ∈ Uq : (u − 1)(u + 1)(u2 + 1) ∈ Uq}

=
∏

ℓ|q: ℓ≡−1 (mod 4)

(
1− 2

ℓ− 1

)
·

∏
ℓ|q: ℓ≡1 (mod 4)

(
1− 4

ℓ− 1

)
.
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Extending uniformity to the Siegel–Walfisz range:

Issue: (φ, σ, σ2) are not jointly WUD uniformly to all q ≤ (log x)K0 .
Inputs n without many large prime factors obstruct uniformity!

Example: Any prime P ≤ x s.t. P ≡ 3 (mod q) satisfies φ(P) ≡ 2,
σ(P) ≡ 4, σ2(P) ≡ 10 (mod q). Thus

#{n ≤ x : (φ, σ, σ2)(n) ≡ (2, 4, 10) (mod q)} ≫ x

φ(q) log x
.

The right hand side is much larger than
1

φ(q)3
#{n ≤ x : gcd(φσσ2(n), q) = 1} if q ≫ (log x)1/2.

Work-around: Restrict to inputs n having sufficiently many large
prime factors. Equidistribution is restored among these inputs.
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Theorem 6 (S. R., 2023).

Fix K0 > 0 and ϵ ∈ (0, 1). We have

#{n ≤ x : P13(n) > q, (φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod q)}

∼ 1

φ(q)3
#{n ≤ x : P13(n) > q, gcd(φσσ2(n), q) = 1},

as x → ∞, uniformly in q ≤ (log x)K0 satisfying P−(q) > 23 and in
coprime residues ai mod q.

For squarefree q, “13” can be replaced by “7”.
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Some central themes behind the arguments:
1. Exploit a “mixing” phenomenon in Uq (quantitative ergodicity
phenomenon for random walks in Uq).

Heuristic: Assume gcd(q, 6) = 1 and let
R′ = {u ∈ Uq : u − 1 ∈ Uq}. Choose uniformly at random
u1, u2, u3, . . . from R′, and consider the products

u1 − 1, (u1 − 1)(u2 − 1), (u1 − 1)(u2 − 1)(u3 − 1), . . .

Mixing in Uq: As J → ∞, each element of Uq becomes roughly

equally likely to appear as one of the products
∏J

j=1(uj − 1).

This mixing plays a central role for WUD of φ(n). In the case of
(φ, σ, σ2), the analogous mixing phenomenon is that of the tuples
(u − 1, u + 1, u2 + 1) in the group U3

q , where u1, u2, u3, . . . are chosen
from the set R = {u ∈ Uq : (u − 1)(u + 1)(u2 + 1) ∈ Uq}.
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Detect this “mixing” using methods from the “anatomy of integers”.

2. Need more “pure analytic” arguments: modify some powerful
methods used to estimate mean values of multiplicative functions.

3. Linear algebra over rings: use Smith normal forms to bound
certain character sums.

4. Need bounds on Fℓ-rational points of certain affine varieties over
Fℓ.
• Need to consider certain regular sequences in Fℓ[X1, . . . ,Xr ].
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Detecting the “mixing” phenomenon: Convenient n

Mixing phenomenon in unit group mod q will be detected using those
n ≤ x that have several very large prime factors.

Several: Parameter J = J(x) ∈ Z+ going to infinity very very slowly.

Very large: Parameter y = y(x) s.t. past y , primes are very regularly
distributed in coprime residue classes mod q, when q ≤ (log x)K0 .

Convenient n: n ≤ x s.t. the J largest prime factors of n are > y
and distinct. In other words, n = mPJ . . .P1, where

max{y ,P(m)} < PJ < · · · < P1.

Convenient n ≤ x give dominant contribution: After some careful
“anatomical” arguments, we can reduce proving Theorems 5 and 6 to
showing that
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Theorem 7 (Workhorse Result).
Let f = φσσ2. As x → ∞, we have

#{n ≤ x conv : (φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod q)}

∼ 1

φ(q)3
#{n ≤ x : gcd(f (n), q) = 1},

uniformly in q ≤ (log x)K0 s.t. P−(q) > 23 and uniformly in ai ∈ Uq.

First step: Reduction to bounded divisor

Proposition 1.
In the above setting, there exists Q0 | q s.t. Q0 = O(1) and

#{n ≤ x conv : (φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod q)}

≈ 1

φ(q)3
· φ(Q0)

3#{n ≤ x : (f (n), q) = 1,

(φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod Q0)}
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The first step: Reduction to bounded modulus.

Any convenient n can be written as mPJ . . .P1 where
max{y ,P(m)} < PJ < · · · < P1. Then φ(n) = φ(m)

∏J
j=1(Pj − 1).

So φ(n) ≡ a1 (mod q) =⇒
∏J

j=1(Pj − 1) ≡ a1φ(m)−1 mod q.

Thus

φ(n) ≡ a1, σ(n) ≡ a2, σ2(n) ≡ a3 mod q

⇐⇒ (P1, . . . ,PJ) ≡ (v1, . . . , vJ) mod q

for some (v1, . . . , vJ) ∈ UJ
q satisfying:

(i)
∏J

j=1(vj − 1) ≡ a1φ(m)−1, (ii)
∏J

j=1(vj + 1) ≡ a2σ(m)−1,

(iii)
∏J

j=1(v
2
j + 1) ≡ a3σ2(m)−1 (mod q).

Let Vq,m denote the set of such (v1, . . . , vJ).
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By J careful applications of Siegel–Walfisz,∑
n≤x conv

(φ,σ,σ2)(n)≡(a1,a2,a3) mod q

1 ≈
∑
m≤x
blah

#Vq,m

φ(q)J

∑
P1,...,PJ
more blah

1

Fact 1: ∃Q0 | q s.t. Q0 = O(1) and uniformly in m,

#Vq,m

φ(q)J
≈

(
φ(Q0)

φ(q)

)3

·
(
α(q)

α(Q0)

)J #VQ0,m

φ(Q0)J
.

One key ingredient: Character sum bounds (Wan, Cochrane).
A less standard key ingredient: Linear algebra over rings.

Note: Here, it is crucial that the three polynomials T − 1, T + 1 and
T 2 + 1 are “multiplicatively independent” over Z, i.e, for any integers
(c1, c2, c3) ̸= (0, 0, 0), we have (T − 1)c1(T + 1)c2(T 2 + 1)c3 ̸=
constant.To apply character sum bounds, it is important that
“multiplicative independence” over Z continues to prevail mod large
prime powers (interpreted suitably) .
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Combining, ∑
n≤x conv

(φ,σ,σ2)(n)≡(a1,a2,a3) mod q

1

≈
(
φ(Q0)

φ(q)

)3

·
(
α(q)

α(Q0)

)J∑
m≤x
blah

#VQ0,m

φ(Q0)J

∑
P1,...,PJ
more blah

1.

After some more technical arguments,

∑
n≤x conv

(φ,σ,σ2)(n)≡(a1,a2,a3) mod q

1 ≈
(
φ(Q0)

φ(q)

)3 ∑
n≤x : (f (n),q)=1

(φ,σ,σ2)(n)≡(a1,a2,a3) mod Q0

1.

This completes our initial reduction step (to bounded modulus Q0).
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The analytic argument I

We have shown: ∃ Q0 | q s.t. Q0 = O(1), and

#{n ≤ x conv : (φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod q)}

≈
(
φ(Q0)

φ(q)

)3

#{n ≤ x : (f (n), q) = 1, (φ, σ, σ2)(n) ≡ (a1, a2, a3) (mod Q0)}

Wanted to show (for Theorem 7, Workhorse Result):

LHS ≈ 1

φ(q)3
#{n ≤ x : gcd(f (n), q) = 1}

Now apply orthogonality to detect congruences mod Q0. Enough to show:

Proposition 2.
For any χ̂ = (χ1, χ2, χ3) ̸= (χ0, χ0, χ0) mod Q0, the sum∑

n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n))

is negligible compared to #{n ≤ x : gcd(f (n), q)} = 1.
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Case 1: When
1(u,Q0)=1 · χ1(u − 1)χ2(u + 1)χ3(u

2 + 1) is not
constant on its support.

Key tool:

Theorem 8 (Halász).

Let F be a multiplicative function s.t. |F (n)| ≤ 1 for all n. For
x ,T ≥ 2,

1

x

∑
n≤x

F (n) ≪ 1

T
+ exp

− min
|t|≤T

∑
p≤x

1− Re(F (p)p−it)

p

 .

Apply this to F (n) = 1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n)).
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Obtaining a lower bound on∑∗

p≤x

1

p
·
(
1− Re(p−itχ1(p − 1)χ2(p + 1)χ3(p

2 + 1))
)
.

Cover the range of summation with “multiplicatively narrow” intervals
of the form (η, η(1 + o(1))] and observe that p−it = e−it log p remains
roughly constant on each of these intervals.

Use Siegel–Walfisz to estimate the rest of the sum.

Remark: For the resulting lower bound to be nontrivial, we need our
hypothesis that 1(u,Q0)=1 · χ1(u − 1)χ2(u + 1)χ3(u

2 + 1) is not
constant on its support.
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Case 2: When
1(u,Q0)=1 · χ1(u− 1)χ2(u +1)χ3(u

2 +1) is constant on
its support.

Recall: Want to show that∑
n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n))

is negligible compared to the main term #{n ≤ x : gcd(f (n), q) = 1}.

Key idea: Modify the Landau–Selberg–Delange (LSD) method.

Usual LSD method (Tenenbaum): Give precise estimates for∑
n≤x an, if we know that

∑
n≥1 an/n

s ≈ ζ(s)z for some z ∈ C.

Note: Possible essential singularity at s = 1.
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The modification

We identify our sum∑
n≤x

1(f (n),q)=1 · χ1(φ(n))χ2(σ(n))χ3(σ2(n))

as the partial sum of the Dirichlet series

Fχ̂(s) =
∞∑
n=1

1(f (n),q)=1

ns
· χ1(φ(n))χ2(σ(n))χ3(σ2(n)).

But here

Fχ̂(s) ≈

 ∏
d|q

d sqfree

∏
ψ mod d
ψ primitive

L(s, ψ)γ(ψ)


α(q)cχ̂

Here cχ̂ = 1(u,Q0)=1 · χ1(u − 1)χ2(u + 1)χ3(u
2 + 1) ̸= 0.
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Note: Two possible essential singularities, at s = 1 and s = βe .

So we modify the usual “LSD con-
tour” into the adjacent one.
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So we modify the usual “LSD con-
tour” into the adjacent one.

Technicalities: almost entirely dif-
ferent from usual LSD (partly in-
spired from work of Scourfield).

After a lot of technical work, we de-
duce that if P−(q) > 23, then∑
n≤x

1(f (n),q)=1·χ1(φ(n))χ2(σ(n))χ3(σ2(n))

is negligible compared to the main
term #{n ≤ x : gcd(f (n), q) = 1}.

This completes the proof of our
Workhorse result Theorem 7, and
hence also of Theorems 5 and 6.
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(Some of) the General Main Results

Consider multiplicative functions f1, . . . , fK : N → Z and polynomials
{Wi,v}1≤i≤K

1≤v≤V
⊂ Z[T ], such that fi (p

v ) = Wi,v (p).

W1,1 W1,2 . . . . . . W1,V
W2,1 W2,2 . . . . . . W2,V
. . . . . . . . . . . . . . .

WK ,1 WK ,2 . . . . . . WK ,V


K×V

Note: For φ, σ, σ2, only the first column of the matrix mattered, as
{u ∈ Uq : u − 1, u + 1, u2 + 1 ∈ Uq} ̸= ∅.
In general this may not happen!

Given k ∈ {1, . . . ,V }, we say that q is k-admissible if
{u ∈ Uq : (∀i) Wi ,k(u) ∈ Uq} ≠ ∅, but
{u ∈ Uq : (∀i) Wi ,v (u) ∈ Uq} = ∅, for each 1 ≤ v ≤ k − 1.
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Notation: For a fixed k ∈ {1, . . . ,V }, define

Q(k; f1, · · · , fK ) := {q : q is k-admissible, f1, . . . , fK are jointly WUD mod q}.

Narkiewicz (1982): Complete description of Q(k ; f1, · · · , fK ).

We give uniform analogues of Narkiewicz’s result, which are best
possible in the range and arithmetic restrictions on q. We just need
two technical hypotheses H1 and H2, which we can prove to be
necessary.

28 of 36



Notation: For a fixed k ∈ {1, . . . ,V }, define

Q(k; f1, · · · , fK ) := {q : q is k-admissible, f1, . . . , fK are jointly WUD mod q}.

Narkiewicz (1982): Complete description of Q(k ; f1, · · · , fK ).

We give uniform analogues of Narkiewicz’s result, which are best
possible in the range and arithmetic restrictions on q. We just need
two technical hypotheses H1 and H2, which we can prove to be
necessary.

28 of 36



Let αk(q) =
1

φ(q)#{u ∈ Uq :
∏K

i=1Wi ,k(u) ∈ Uq} and

Dmin = min1≤i≤K deg(Wi ,k).

Theorem 9 (S.R., 2023).

Fix K0 > 0 and ϵ ∈ (0, 1). Under H1 and H2, the functions f1, . . . , fK
are jointly WUD, uniformly modulo q ∈ Q(k ; f1, · · · , fK ), provided
any one of the following holds.

(i) q ≤

{
(log x)K0 , if K = 1 and W1,k is linear.

(log x)(1−ϵ)αk (q)(K−1/Dmin)
−1
, otherwise.

.

(ii) q is squarefree and qK−1D
ω(q)
min ≤ (log x)(1−ϵ)αk (q).

Optimality: This result is essentially optimal in the arithmetic
restrictions on q as well as in the hypotheses H1 and H2. Also, second
case of (i) and (ii) are optimal in the range of q.
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As for φ, σ, σ2, we need to restrict our input sets to get complete uniformity
up to arbitrary powers of log x. Fix K0 > 0.

Theorem 10 (S.R., 2023).
Fix K0 > 0. Under H1 and H2, we have

#{n ≤ x : PR(n) > q, (∀i) fi (n) ≡ ai (mod q)}

∼ 1

φ(q)K
#

{
n ≤ x : PR(n) > q, gcd(

K∏
i=1

fi (n), q) = 1

}
,

uniformly in q ≤ (log x)K0 lying in Q(k; f1, · · · , fK ) and in a1, . . . , aK ∈ Uq. Here

1. R = max {k(KD + 1), k (1 + (k + 1) (K − 1/D))} for general q.

2. If q is squarefree and k ≥ 2, then

R =

{
k(Kk + K − k) + 1, if one of {Wi,k}Ki=1 not sqfull.
k(Kk + K − k + 1) + 1, in general.

3. If q is squarefree and k = 1, then R = 2K + 1.
Further, if k = K = 1 and W1,k is not squarefull, then R = 2.

Optimality: Most of these R’s are either exactly or nearly optimal, ensuring
joint WUD among as large a set of inputs as possible.
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Ongoing work: Finer distribution questions and an
extension of the Landau–Selberg–Delange method

Question: Can we say anything about the deviation of
#{n ≤ x : (∀i) fi (n) ≡ ai (mod q)} from its expected value

1
φ(q)K

#{n ≤ x , (∀i) gcd(fi (n), q) = 1}, uniformly for q ≤ (log x)K0?

Rate of convergence? Second–order behavior?

Previous methods: say nothing (worthwhile)!

To say something interesting, we will need precise asymptotics for the

sums
∑

n≤x χ1(f1(n)) . . . χK (fK (n)) in the full range q ≤ (log x)K0 .
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General question (extension of LSD): Assuming that∑
n≥1 an/n

s ≈
∏
χ mod q L(sk , χ)

αχ , give precise asymptotic series
estimating

∑
n≤x an uniformly in q in a wide range.

Theorem 11 (S.R. 2024, in preparation).

Fix K0 > 0. In the above setting and under some natural additional
hypotheses, we have

∑
n≤x

an =
x1/k

(log x)1−αχ0

∑
0≤j≤N

µj
(log x)j

+ O(error term),

uniformly in x ≥ 3, N ≥ 0 and q ≤ (log x)K0 . The error term is
genuinely smaller than the main term in the full range q ≤ (log x)K0 .
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Concrete and potential applications (ongoing work):

1. Estimate #{n ≤ x : gcd(f (n), q) = 1} for large classes of
multiplicative functions f .

• Rankin, Serre, Spearman–Williams, Narkiewicz, Ford–Luca–Moree,
etc.: specific examples of interesting f and fixed q.

• Scourfield: varying q and f well-controlled on primes,

• Theorem 11: precise estimates for larger classes of f , uniformly in
q ≤ (log x)K0 .

• Extra generality with “k” allows us to consider more interesting
varieties of f and q, for which behavior of f at higher prime powers
becomes crucial. (Eg.: σ(n) for 2 | q: Behavior at p2 matters.)
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2. Can extend all previous work from families of multiplicative
functions to hybrid families of additive and multiplicative functions.

Eg.: Given a (polynomially-defined) multiplicative function f and a
(polynomially-defined) additive function g , estimate
#{n ≤ x : f (n) ≡ a, g(n) ≡ b (mod q)} uniformly in q ≤ (log x)K0 ,
a ∈ Uq and b ∈ Z/qZ. Are (f , g) jointly equidistributed mod q?

Can answer this question (for families of such functions) with precise
understanding of second–order behavior.
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Concrete and potential applications (ongoing work,
contd.):

3. Applications in non–equidistribution settings:

(1) Positive integers with prime divisors restricted to residue classes:
Given q ∈ Z+ and A ⊂ Uq, estimate
#{n ≤ x : p | n =⇒ p mod q ∈ A}.
◦ Landau (1908): Does this for fixed q and A.
◦ Theorem 11: Uniformly in q ≤ (log x)K0 and A ⊂ Uq.

(2) Distributions of the least invariant factor of multiplicative groups:
Writing Un = Z/λ1Z⊕ Z/λ2Z⊕ · · · ⊕ Z/λrZ with
λ1 | λ2 | · · · | λr , let λ1(n) := λ1. Estimate #{n ≤ x : λ1(n) = d}.
◦ Chang–Martin (2020): Do this for fixed d .
◦ Theorem 11: Uniformly in d ≤ (log x)K0 with much better error terms.
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Thank you for your attention!
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